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Abstract

The paper is concerned with theoretical and computational issues of a numerical resolution of
the convection-diffusion equation. We use an implicit scheme for the time discretization and
an adaptive wavelet-based method for a spatial discretization. We use a well-conditioned cubic
spline-wavelet basis and a method for an inexact multiplication of wavelet stiffness matrix with
a vector which we have recently proposed in [1, 2]. The theoretical advantages of our scheme
as well as numerical examples will be presented.
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Introduction

In this paper we consider a numerical approximation of the convection-diffusion equation

∂u
∂ t

= µ∆u−bdivu− cu+ f for x ∈ Ω, t ∈ (0,T ) , (1)

with initial and boundary conditions

u(x,0) = u0(x) for x ∈ Ω, u(x, t) = 0 for x ∈ ∂Ω.

We assume thatµ > 0, b and c are constants,u : Ω× (0,T ) → R , f , u0 ∈ L2(Ω). We
consider only the domainΩ = (0,1)n. It is well-known that the solution of (1) typically contains
layers and that the numerical solution by the Galerkin method on uniform mesh suffers from
the Gibbs phenomenon. Thus, it is convenient to solve the problem adaptively. In this paper, we
use a modification of the wavelet-based adaptive method from[6] for a spatial discretization,
because it has several advantages, namely:

• The adaptivity in the context of a wavelet discretization issimple. It consists in keeping
the large wavelet coefficients and discarding the smaller ones.

• The algorithm is asymptotically optimal. It means that the number of floating point oper-
ations depends linearly on the number of nonzero wavelet coefficients.
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• The condition numbers of stiffness matrices are uniformly bounded.

The paper is organized as follows: In Section 2 we use the backward Euler formula for a
discretization in time and derive a variational formulation for the given time level. We define
an equivalentl2-problem and propose iterations for solving this problem inSection 3. In Sec-
tion 4 we introduce an implementable version of the iterations and discuss computational issues.
Numerical examples are presented in Section 5.

1 Discretization

Let h > 0, tk := kh anduk be an approximation ofu(·, tk). For simplicity, we use the backward
Euler method for a discretization in time:

uk+1−uk

τ
= µ∆uk+1−bdivuk+1− cuk+1 + f .

Then the variational formulation of our problem at the time leveltk is

ak

(

uk+1,v
)

= f k (v) , v ∈ H1
0 (Ω) , (2)

where a continuous bilinear formak : H1
0 (Ω)×H1

0 (Ω) → R and f k ∈ H−1
0 (Ω) are given by

ak (u,v) := µ
∫

Ω
∇u ·∇vdx+b

∫

Ω
vdivudx+

(

1
τ

+ c

)

∫

Ω
uvdx

f k (v) :=
1
τ

∫

Ω
ukvdx+

∫

Ω
f vdx,

whereH1
0 (Ω) denotes the subspace of all functions from a Sobolev spaceH1(Ω) with zero

traces on∂Ω, H−1
0 (Ω) denotes its dual. In the sequel, we solve (2) by wavelet-based method.

For this reason we propose the definition of a wavelet basis ofSobolev spaceHs
0 (Ω).

FamilyΨ := {ψλ ,λ = ( j,k) ∈ J } for an infinite setJ = JΦ∪JΨ, #JΦ < ∞, is called
thewavelet basis of H1

0 (Ω), if

i) Ψ is a Riesz basis ofH1
0 (Ω), that meansΨ generatesH1

0 (Ω) and there exist constants
c,C ∈ (0,∞) such that for allb := {bλ}λ∈J

∈ l2(J ), whereλ = ( j,k) and |λ | = j
denotes the level, holds

c‖b‖ ≤

∥

∥

∥

∥

∥

∑
λ∈J

bλ 2−|λ |ψλ

∥

∥

∥

∥

∥

Hs(Ω)

≤C‖b‖ .

ii) Functions are local in the sense that diam(Ωλ ) ≤ C2−|λ | for all λ ∈ J , whereΩλ is
support ofψλ .

iii) Functions have cancellation properties of the orderm, i.e.

|〈v,ψλ 〉| ≤ 2−m|λ | |v|Hm(Ωλ ) , λ ∈ Jψ , v ∈ H1
0 (Ω) ,

where〈·, ·〉 denotes theL2(Ω) inner product.
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In this paper,Ψ will be a cubic spline wavelet basis adapted to homogeneous Dirichlet
boundary conditions from [1] that has a cancellation property of the order six. The basis func-
tions are local and also their duals are local. Its structureis

Ψ = Φ4∪
∞
⋃

j=4

Ψ j, (3)

whereΦ4 contains scaling functions andΨ j is formed by wavelets on the levelj. Also the
smoothness of basis functions is an important property. In this case, the Sobolev exponent of
smoothness is 2.5.

2 Wavelet Method

In this section we propose a method for solving (2) based on wavelets. LetDk be a diagonal
matrix with diagonal elements

√

ak (ψλ ,ψλ ). ThenD−1
k Ψ is a wavelet basis inH1

0 (Ω) and the
equation (2) can be reformulated as an equivalent biinfinitematrix equation

Akuk = fk, (4)

whereAk = D−1
k ak (Ψ,Ψ)D−1

k is a diagonally preconditioned stiffness matrix,uk =
(

uk
)T

D−1
k Ψ

andfk = D−1
k f k (Ψ).

Then,uk solves (2) if and only ifuk solves the matrix equation (4). Moreover, the matrixAk

satisfies
condAk ≤C < +∞. (5)

While the classical adaptive methods use refining and derefining a given mesh according
to a-posteriori local error indicators, the wavelet approach is somewhat different and follows a
paradigm which comprises the following steps:

1. One starts with a variational formulation but instead of turning to a finite dimensional
approximation, using the suitable wavelet basis the continuous problem is transformed
into an infinite-dimensionall2-problem.

2. One then tries to devise convergent iterations for thel2-problem.

3. Finally, one derives a practical version of this idealized iteration. All infinite-dimensional
quantities have to be replaced by finitely supported ones andthe routine for the application
of the biinfinite-dimensional matrixA approximately have to be designed.

We solve the discrete infinite-dimensional problem (4) approximately. For notational sim-
plicity we omit the indexk in this section. MatrixA := Ak is not symmetric positive definite,
but one can obtain a symmetric positive definite formulationby squaring:L := AT A, g := AT f.
Then (4) is equivalent toLu = g. There exists some relaxation weightω with

‖I −ωL‖ ≤ ρ < 1. (6)

Thus simple iterations of the form

un+1 = un +ω (g−Lun) (7)

converge. Neither we can evaluate the generally infinite array g exactly, nor we can compute
Lu , even whenu has a finite support. Thus, we need to approximateg and productLu with
some given precision.
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3 Adaptive Wavelet Scheme

We use the following implementable version of the ideal iteration (7).

SOLVE [L, g, ε] → uε
Let ω satisfy (6) andK ∈ N be fixed such thatρK < 1/10.
Set j := 0, u0 := 0, ε0 :=

∥

∥L−1
∥

∥‖g‖.
While ε j > ε do

j := j +1, ε j := 10ρKε j−1, gj := RHS[g,
ε j

20ωK ], z0 := ui−1,
l := l +1, resl := 0,
If l ≤ K and‖resl‖ >

(∥

∥L−1
∥

∥− 1
10ωK

)

ε j do
l := l +1,
resl := gj −APPLY [L ,zl−1,

ε j
20ωK ],

zl := zl−1 +ω resl,
end if,
u j := COARSE[zl,0.7ε j],

end while,
uε := u j.

Let us comment particular subroutines. The subroutineCOARSE computes a vectorvε
which is close to the vector ofvN of N-largest coefficients ofv for which

∥

∥v−vN
∥

∥ < ε. Since
sorting of all elements ofv requiresO (M logM) operations, whereM is the length ofv, the
procedureCOARSE uses so called binning [8].

COARSE[v, ε] → vε

1. Setq :=
⌈

log
(

(#suppv)1/2‖v‖l2 /ε
)⌉

.

2. Regroup the elements ofv into the setsB0, . . . ,Bq, wherevλ ∈ Bi if and only if

2−(i+1) ‖v‖l2 < |vλ | ≤ 2−i ‖v‖l2 , 0≤ i < q. (8)

Possible remaining elements are put into the setBq.
3. Createvε by collecting nonzero entries fromB0 and when it is exhausted fromB1 and so

forth until
‖v−vε‖ ≤ ε. (9)

The subroutine
RHS[g,ε] → gε (10)

approximates the right-hand sideg by the finitely supported vectorgε such that

‖g−gε‖ ≤ ε. (11)

It can be realized by computing in a preprocessing step a highly accurate approximation tog in
the dual basis along with the corresponding coefficients andthen applying ofCOARSE to this
finitely supported array of coefficients.

In [2], we proposed the improved matrix-vector multiplication in the context of adaptive
wavelet methods. Unlike [3, 9], we are not searching for 2k greatest vector entries in absolute
value, but instead we trace actual decay of matrix and vectorentries. Let us denote

(L k)λ ,λ ′ :=

{

Lλ ,λ ′, ||λ |− |λ ′|| ≤ k,
0, otherwise.

(12)
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and
SL k := max

∣

∣

∣
(L k)λ ,λ ′

∣

∣

∣
, λ ,λ ′ ∈ J (13)

for k ≥ 0, andvk contains all vector entries greater than a given tolerance divided bySL k . Then
we can compute

Lv ≈ wK :=
K

∑
k=0

L kvk.

We can chooseK such that
‖wK −Lv‖ ≤ ε. (14)

In [2], it was shown that the number of floating point operations needed for computation of the
approximate productLV , depends linearly on the number of nonzero elements ofwK.

Theorem 1. Under the above assumptions, for any ε > 0, the approximations uε produced by
SOLVE satisfy

∥

∥u−uT
ε D−1Ψ

∥

∥ . ε (15)

and
# f lops ≤C#suppuε , (16)

where the constant C does not depend on ε .

Proof. Since the used subroutines are asymptotically optimal, theasymptotical optimality of
SOLVE can be proven by similar way as in [6].

As an alternative to the Richardson iterations the steepest descent approach was studied
in [7].

4 Numerical examples

In this section, we present two numerical examples.

Example 1. Let us consider the equation

µu′′ +u′−u = 1, (17)

with homogeneous Dirichlet boundary conditions

u(0) = u(1) = 0. (18)

It is known that the exact solution is given by

u(x) =

(

el −1
)

ekx −
(

1− ek
)

elx

ek − el −1, (19)

where

k =
−1+

√
1+4µ

2µ
, l =

−1−
√

1+4µ
2µ

. (20)

The condition numbers of stiffness matrices As for this equation corresponding to the multi-
scale wavelet basis with s levels of wavelets are displayed in Table 1. It can be seen that they
are indeed uniformly bounded.

In this case a boundary layer occurs near the point 0. The graph of u for µ = 10−3 is
displayed at Figure 1. We solved this equation by an adaptive wavelet scheme from Section 3.
Convergence history is shown in Figure 1. Only 54 basis function were used for achieving the
error 3.27·10−5 in the L∞-norm.
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Tab. 1. The condition numbers of stiffness matrices As corresponding to the multi-scale wavelet
basis with s levels of wavelets

s condAs

1 75.1
2 96.7
3 101.2
4 101.2
5 101.8
6 101.8
7 101.8
8 101.8

Source: Own
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Fig. 1. The graph of the exact solution (left) and convergence history (right) for Example 1. for
µ = 10−3

Example 2. Let us consider the equation

∂u
∂ t

= µu′′ +u′− et , (21)

with initial and boundary conditions

u(x,0) = u(x) for x ∈ [0,1] , u(0, t) = u(1, t) = 0 for t ∈ [0,1] , (22)

where u(x) is given by (19). Then the exact solution is

u(x, t) = u(x)et . (23)

For µ = 10−3 and τ = 0.05 we need only 355basis functions to obtain an error less than 10−3

at the time T = 1.

Conclusion

In this paper we proposed an adaptive wavelet-based method for numerical resolution of the
convection-diffusion equation and we briefly reviewed someaspects of a wavelet discretization
in connection with our numerical scheme. Computational details and theoretical results one can
find in [1, 2, 4, 5, 6].
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ADAPTIVNÍ WAVELETOV É SCHÉMA PRO KONVEKTIVNĚ-DIFŮZNÍ ROVNICI

Článek se zab́yvá teoreticḱymi a výpočetńımi aspekty numericḱehořěseńı konvektivňe-difůz-
ńıch rovnic. Poǔzijeme implicitńı sch́ema pročasovou diskretizaci a adaptivnı́ waveletovou
metodu pro prostorovou diskretizaci. Použijeme dob̌re podḿıněnou kubickou spline-waveleto-
vou b́azi a metodu pro p̌ribli žné ńasobeńı waveletov́e matice tuhosti s vektorem, které jsme
ned́avno navrhli. Budou prezentovány teoreticḱe výhody nǎseho sch́ematu a taḱe numericḱe
přı́klady.

DAS ADAPTIVE WAVELET-SCHEMA FÜR KONVEKTIV-DIFFUSE

GLEICHUNGEN

Dieser Artikel befasst sich mit theoretischen und rechnerischen Aspekten der numerischen
Lösung konvektiv-diffuser Gleichungen. Dazu verwenden wirein implizites Schema für die
zeitliche Diskretisierung und die adaptive Wavelet-Methode für eine r̈aumliche Diskretisierung.
Wir benutzen die gut bedingte kubische Spline-Wavelet-Basis und -Methode f̈ur eine ann̈ahernde
Multiplikation der Z̈ahigkeits-Wavelet-Matrix mit einem Vektor, den wir vor nicht langer Zeit
entworfen haben. Es werden theoretische Vorteile unseres Schemas und auch numerische
Beispiele vorgestellt.

ADAPTACYJNY SCHEMAT FALKOWY DLA RÓWNANIA

KONWEKCYJNO-DYFUZYJNEGO

W artykule przedstawiono teoretyczne i obliczeniowe aspekty numerycznego rozwia֒zywania
równán konwekcyjno-dyfuzyjnych. Zastosowano schemat niejawny(dyskretny) dla czasowej
dyskretyzacji oraz adaptacyjna֒ metod֒e falkowa֒ (waveletow֒a) dla dyskretyzacji przestrzennej.
Wykorzystujemy dobrze uwarunkowana֒ kubiczn֒a baz֒e splajno-falkow֒a oraz metod֒e przybli̇zo-
nego mnȯzenia falkowej macierzy sztywności z wektorem, kt́ore niedawno zaproponowaliśmy.
Zostały zaprezentowane teoretyczne zalety naszego schematu oraz przykłady numeryczne.
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