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Abstract

The paper is concerned with theoretical and computati@asaleis of a numerical resolution of
the convection-diffusion equation. We use an implicit sokédor the time discretization and
an adaptive wavelet-based method for a spatial discrefizaiVe use a well-conditioned cubic
spline-wavelet basis and a method for an inexact multipbosof wavelet stiffness matrix with
a vector which we have recently proposed in [1, 2]. The thexakeadvantages of our scheme
as well as numerical examples will be presented.
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Introduction

In this paper we consider a numerical approximation of thevection-diffusion equation

%:uAu—bdivu—qurf for xeQ, te(0,T), Q)

with initial and boundary conditions
u(x,00=w(x) for xeQ, u(xt)=0 for xeadQ.

We assume thatt > 0, b andc are constantsy: Q x (0,T) = R, f,u® € L?(Q). We
consider only the domai? = (0,1)". Itis well-known that the solution of (1) typically contain
layers and that the numerical solution by the Galerkin meth uniform mesh suffers from
the Gibbs phenomenon. Thus, itis convenient to solve thiel@moadaptively. In this paper, we
use a modification of the wavelet-based adaptive method fédror a spatial discretization,
because it has several advantages, namely:

e The adaptivity in the context of a wavelet discretizatiosimaple. It consists in keeping
the large wavelet coefficients and discarding the smalleson

e The algorithm is asymptotically optimal. It means that thenber of floating point oper-
ations depends linearly on the number of nonzero waveldficieats.



e The condition numbers of stiffness matrices are unifornuyrided.

The paper is organized as follows: In Section 2 we use thevimckEuler formula for a
discretization in time and derive a variational formulatior the given time level. We define
an equivalent?-problem and propose iterations for solving this problerSéttion 3. In Sec-
tion 4 we introduce an implementable version of the iteratiand discuss computational issues.
Numerical examples are presented in Section 5.

1 Discretization

Leth > 0, t, := kh andu® be an approximation af(-,t). For simplicity, we use the backward
Euler method for a discretization in time:

Gk ) ) ’
——— =phu 1 pdivut — cuftt 4 f.

Then the variational formulation of our problem at the tireedlty is
ac(Utv) = K V), veHi(@). 2)

where a continuous bilinear forex : H3 (Q) x H3 (Q) — R and fk € Hy* (Q) are given by

ax (u,v) ::u/ Du-Dvdx+b/ vdivudx+ (}—}—C)/ uvdx
Q Q T Q

fK(v) ::}/ u"vdx+/ fvdx,
T.Jo Q

whereH} (Q) denotes the subspace of all functions from a Sobolev spa¢@) with zero
traces oo Q, Hal (Q) denotes its dual. In the sequel, we solve (2) by waveletebasthod.
For this reason we propose the definition of a wavelet bassobblev spacels(Q).

FamilyW :={y),A = (j,k) € #} foraninfinite set # = ZoU _Zy,# o < o, is called
thewavelet basis of Hg (Q), if

i) Wis a Riesz basis dfi} (Q), that meansp generate$i} (Q) and there exist constants
c,C € (0,0) such that for allb := {bA})\e/ €12(_#), whereA = (j,k) and|A| = j
denotes the level, holds

clb <|| T ba2 My,

AeJ

<Cllbl|.
H3(Q)

ii) Functions are local in the sense that di@y) < C2 A for all A € _#, whereQ, is
support ofy, .

iii) Functions have cancellation properties of the ordgire.

(v, ) < 27™A Vum,), A€ Fy, VE Ho (Q),

where(-,-) denotes th&? (Q) inner product.



In this paper,W will be a cubic spline wavelet basis adapted to homogeneorshi2t
boundary conditions from [1] that has a cancellation priypef the order six. The basis func-
tions are local and also their duals are local. Its strudtire

W=ao,U W, 3)
j=4

where®,4 contains scaling functions aridl; is formed by wavelets on the levgl Also the
smoothness of basis functions is an important propertyhildase, the Sobolev exponent of
smoothness is.3.

2 Wavelet Method

In this section we propose a method for solving (2) based orelets. LetDy be a diagonal
matrix with diagonal elementg/ay (Y, Yy ). ThenD,;lLIJ is a wavelet basis ikiJ (Q) and the
equation (2) can be reformulated as an equivalent biinfmaé&ix equation

Akyk =K (4)

whereAk =D, Tay (W, W) D, Lis a diagonally preconditioned stiffness matri%—= (u¥)" D '
andfk = D 1k (W),
Then,uk solves (2) if and only itk solves the matrix equation (4). Moreover, the maitx

satisfies
condAK < C < . (5)

While the classical adaptive methods use refining and demgfmigiven mesh according
to a-posteriori local error indicators, the wavelet apptos somewhat different and follows a
paradigm which comprises the following steps:

1. One starts with a variational formulation but insteadwhing to a finite dimensional
approximation, using the suitable wavelet basis the cantis problem is transformed
into an infinite-dimensiondP-problem.

2. One then tries to devise convergent iterations fot thgroblem.

3. Finally, one derives a practical version of this idealizeration. All infinite-dimensional
guantities have to be replaced by finitely supported onesremautine for the application
of the biinfinite-dimensional matriA approximately have to be designed.

We solve the discrete infinite-dimensional problem (4) agpnately. For notational sim-
plicity we omit the indexk in this section. MatrixA := AK is not symmetric positive definite,
but one can obtain a symmetric positive definite formulabigrsquaringl := ATA, g:= ATf.
Then (4) is equivalent thu = g. There exists some relaxation weightwith

N-wlL]<p<1 (6)
Thus simple iterations of the form
U™ = u"+ w(g—Lu") 7)

converge. Neither we can evaluate the generally infinitayagrexactly, nor we can compute
Lu, even wheru has a finite support. Thus, we need to approxingasad productLu with
some given precision.



3 Adaptive Wavelet Scheme
We use the following implementable version of the ideakitien (7).

SOLVE L, g, €] — ug
Let w satisfy (6) andK € N be fixed such thgd¥ < 1/10.
Setj:=0,up:=0,&:=[[L gl
While € > € do
ji=j+1¢ :=100K¢_1, gj := RHS[Q, 5pix ], Z0 1= Uj_1,
l:=1+1,res =0,
If | <K and|res|| > (]|L || - 155 ) & do
=141,
res :=gj — APPLY [L, 21, 5oo ),
=7 1+wres,

end if,

uj := COARSE[z,0.7¢j],
end while,
Ug := Uj.

Let us comment particular subroutines. The subrouB@ARSE computes a vectov,
which is close to the vector of¥ of N-largest coefficients of for which ||v—vN|| < &. Since
sorting of all elements of requires& (MlogM) operations, wher# is the length ofv, the
procedureCOARSE uses so called binning [8].

COARSE]v, €] — v¢

1. Setq := [Iog ((#suppv) Hlez/sﬂ.
2. Regroup the elements winto the setdy, ..., Bq, wherev, < B; if and only if

1/2

27 vl < val <27 |Vlf, O<i<a. (8)

Possible remaining elements are put into theBget
3. Createv; by collecting nonzero entries froBy and when it is exhausted froBy and so
forth until
[v—ve| <. 9)

The subroutine
RHS([g,€] — g (10)

approximates the right-hand sigdy the finitely supported vecta; such that
l9—gell <e. (11)

It can be realized by computing in a preprocessing step dyhégiturate approximation @in
the dual basis along with the corresponding coefficientsthed applying ofCOARSE to this
finitely supported array of coefficients.

In [2], we proposed the improved matrix-vector multiplicat in the context of adaptive
wavelet methods. Unlike [3, 9], we are not searching fogatest vector entries in absolute
value, but instead we trace actual decay of matrix and vecties. Let us denote

Laas (A=Al <k,

(L= { 0, otherwise. (12)



and
Si= max‘(Lk)AﬁA, AMNe g (13)

for k> 0, andvy contains all vector entries greater than a given toleranddedi by S ,. Then
we can compute

K
Lv ~wg = Z L (V.
k=0

We can choosK& such that
Jwk —Lv| <& (14)

In [2], it was shown that the number of floating point openasimeeded for computation of the
approximate produdtV , depends linearly on the number of nonzero elemenigof

Theorem 1. Under the above assumptions, for any € > 0, the approximations u, produced by
SOLVE satisfy
lu—uiD W] <€ (15)

and
#flops < C#suppug, (16)

where the constant C does not depend on .

Proof. Since the used subroutines are asymptotically optimalalyenptotical optimality of
SOLVE can be proven by similar way as in [6]. O

As an alternative to the Richardson iterations the steepeEstethit approach was studied
in [7].

4 Numerical examples
In this section, we present two numerical examples.
Example 1. Let us consider the equation
pu’ +u —u=1, (17)
with homogeneous Dirichlet boundary conditions
u(0)=u(1)=0. (18)

It is known that the exact solution is given by

d_1)dx— (1—€)ex
U(X):( ) ek—é ) -1 (19)
where
ko “iEvIFa o o VITA (20)

2U 2u
The condition numbers of stiffness matrices A® for this equation corresponding to the multi-
scale wavelet basis with s levels of wavelets are displayed in Table 1. It can be seen that they
are indeed uniformly bounded.

In this case a boundary layer occurs near the point 0. The graph of u for u = 1023 is
displayed at Figure 1. We solved this equation by an adaptive wavelet scheme from Section 3.
Convergence history is shown in Figure 1. Only 54 basis function were used for achieving the
error 3.27-107° in the L®-norm.



Tab. 1. The condition numbers of stiffness matrices AS corresponding to the multi-scale wavel et

basis with s levels of wavelets

75.1
96.7
101.2
101.2
101.8
101.8
101.8
101.8
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7

Source: Own

Fig. 1. The graph of the exact solution (left) and convergence history (right) for Example 1. for
u=103

Example 2. Let us consider the equation

%:uu’#u’—e‘, (21)
with initial and boundary conditions
u(x,0)=u(x) for xe[0,1, u(0,t)=u(Lt)=0 for te][0,1], (22)
where u(x) isgiven by (19). Then the exact solution is
u(xt) =u(x) €. (23)

For 4 =103 and T = 0.05we need only 355basis functions to obtain an error less than 103
atthetimeT = 1.

Conclusion

In this paper we proposed an adaptive wavelet-based metimatufmerical resolution of the
convection-diffusion equation and we briefly reviewed s@spects of a wavelet discretization
in connection with our numerical scheme. Computationalidedad theoretical results one can
findin[1, 2, 4, 5, 6].
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ADAPTIVNI WAVELETOV E SCHEMA PRO KONVEKTIVNE-DIFUZNI ROVNICI

Clanek se zajwa teoretickmi a wWpotetrimi aspekty numeriddhofeseri konvektivre-diftiz-
nich rovnic. Pouijeme impliciti schema procasovou diskretizaci a adaptiviwaveletovou
metodu pro prostorovou diskretizaci. Rgame dolie podmnénou kubickou spline-waveleto-
vou bazi a metodu pro fiiblizné nasobenwaveletowe matice tuhosti s vektorem, kéejsme
nedavno navrhli. Budou prezentamy teoretick whody n&eho scematu a ta& numericlke
priklady.

DAS ADAPTIVE WAVELET-SCHEMA FUR KONVEKTIV-DIFFUSE
GLEICHUNGEN

Dieser Artikel befasst sich mit theoretischen und rectsoben Aspekten der numerischen
Losung konvektiv-diffuser Gleichungen. Dazu verwendeneirrimplizites Schemaiir die
zeitliche Diskretisierung und die adaptive Wavelet-Melbdir eine Aaumliche Diskretisierung.
Wir benutzen die gut bedingte kubische Spline-WaveletBasd -Methodeiir eine anahernde
Multiplikation der Zahigkeits-Wavelet-Matrix mit einem Vektor, den wir vor htdanger Zeit
entworfen haben. Es werden theoretische Vorteile unserthen®as und auch numerische
Beispiele vorgestellt.

ADAPTACYJNY SCHEMAT FALKOWY DLA ROWNANIA
KONWEKCYJNO-DYFUZYJNEGO

W artykule przedstawiono teoretyczne i obliczeniowe agpakmerycznego roz\g@zywania
rownanh konwekcyjno-dyfuzyjnych. Zastosowano schemat nieja{dygkretny) dla czasowej
dyskretyzacji oraz adaptacgmeto@ falkowa (waveletowa) dla dyskretyzacji przestrzennej.
Wykorzystujemy dobrze uwarunkowakubiczra baz splajno-falkova oraz metod przyblzo-
nego mnaenia falkowej macierzy sztywsoi z wektorem, kire niedawno zaproponowsiny.
Zostaty zaprezentowane teoretyczne zalety naszego stinenaa przyktady numeryczne.



