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Abstract

A viscoelastic simply supported rotationally symmetridipofixed on a base, is considered.
The body is loaded by a flat plunger, which moves in the dioectif thez axis by a constant
velocity v. In this work the reaction force is computed. This allowsasdmpare numerical
results with data from rheological experiment (see [6]).[7The variational formulation of
the problem is derived and transformed to cylindrical comates. Some results of numerical
calculations are presented.
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Introduction

Mathematical modeling of technological processes has bleeady regarded as a powerful tool
for an optimization of technological processes also inggladustry. The fundamental issue of
virtual modelling of silica glass forming is an accuracy einmerical outputs. Ciritical factor

Is not only definition of boundary conditions, mainly thetrnoaes, but also specification of
material properties. Number of methods for an identificati rheological properties exists
[1]. The disadvantage of the most of published models isgaddent description of the both
stages - the stage with the dominant influence of an elastigpooent of deformation and

that one with a dominant viscous flow [8]. One of the most effecmethods is isothermal

compression method which is based on the evaluation of ttee fi@sponse on compression
loading of cylindrical samples [4], [6], [7].

The advantage of this method is its relatively simplicitydgrossibility to evaluate both
elastic and viscous properties of glass melt simultangadigting one experiment. However
the critical issue of this method is an accuracy of evalmatibexperimental outputs. Several
methods were suggested.

In this contribution we introduce the variational formudat of the rheological experiment
model, which includes viscoelastic deformations. Thidopem will be used as a state problem
in formulations of various identification problems for v@rs model parameters, that are planed
as next step of our research. Nevertheless recent numeggidts are roughly in conformity
with results of experiments (see [6]).



1 Formulation of the Problem

Forming of glass is quite complicated process which costhoth elastic and plastic responses
to strain from stress. This is the main reason of using a eisstic model to describe relation-
ship between stress and strain.
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Fig. 1. Scheme of glass sample

We consider a viscoelastic isotropic homogeneous cyliatibodyQ symmetrical accord-
ing to zaxis with bases formed by two parallel circles with reiliiand altituden. We consider
the body which is fixed on both bases and which is free on it©aading surface. We denote
P, upper, respP; bottom, base anB surrounding surface of the body. The body is deformed
by flat plunger moving by a constant velocityn the direction of the axis placed on the upper
base. To represent changes of the shape of the body we defeferandtion tensor by the

formula L /ou(xt)  oui(xD)
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The stress is represented by symmetrical stress tenddke consider stress strain relation given
by viscoelastic generalized Hook’s law in the form

Uij(X,t):dj[wA(t—T)WdT‘FZ[mu(t—T)WdT, 2

whereA (t) and u(t) denote relaxation functions describing glass propertigg@ssing, resp.
in shear andj is the Kroneker symbol.
The balance of a linear momentum for the dynamic problemHeagorm
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whereZ (x,t) represents the body forces gndhe density of glass.

We use the time discretization method:

Let the time interval0, T] be divided into the subintervalt_1,t], fork=1,2,..., p, then (3)
has at each time level the form

k - _
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J

wherez(x) = u(X,t), off(x) = 0ij (x,t), F(x) = Zi(x &) andh = T.
According to the fact that the body, support and load havatimtal symmetry we transform



the problem to cylindrical coordinates and apply dimensisaduction of an angle to get two-
dimensional problem.

We are going to solve the problem in the regdf{a) dependent on time the leviglbounded
by the axisr (partl 3), the axisz (partl4), the straight linez= h—tv (partl"'1) and the free
boundary described by the functior{z) of variablez (partl ).
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Fig. 2. Domain after the dimensional reduction

According to the fact that the problem has rotational symynee assume that a displace-

ment vector component in the directidnis zero(Z§ (x) = 0), similarly % =0, andg—? =0.
We denote the physical components of the displall(cementrvlexcmvo functions, e.g.
(X) = uy,
Z(x) = wk,
(Z(%) = 0
The relationship between the displacement vector and tamsénsor is in the form
AUk
&y = o (5)
oK
£5,= b7 (6)
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1,0u¢  gwk
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(e =0, & =0). (9)
The components of the stress tengdnave the form
1/t _ _
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e=&r + &+ €99 - (15)

The bilinear form representing mechanical work of innecésrhas the form
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Linear functional representing mechanical work of outwiardes has the form
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Boundary conditions:
The flat plunger moves in the direction of thaxis by the constant velocityacting on part of

boundary 4, i.e.

\l/Jv::(\)/(t—tk) } on 1. (18)

The part of boundary, represents the so called free boundary which is deformebéintiu-
ence of the inner forces and is not able to catch any forcgétatror normal)

O-rr = 0
GOpy— 0 } on TI». (29



The part of boundary s is fixed, i.e.

u=20
w:O} on I3. (20)

The part of boundary 4 is formed by the axis of symmetry and has properties of contiah
solid support (without friction), i.e.

u=20
0_\,\,_0}on Ms. (21)
or —

We define the spad&/>2" (DX(a)) with the norm

sz = ([, [(2) 4 (%) e
L2 =\ Jokay |\ ar 0z

We define the space of functions with the finite energy as tlighted Sobolev spac#”’ (DX(a))

rdx) . (22)

2 (DX(a)) = {t= (u, w) e WH2T (DX (ar)) x W2 (DK(a))} . (23)

We denote
¥ ={ueC”(DX(a)) | suppunT4=0, u=0 on M1 Ul3}. (24)

LetV; be the closure of the sef in the spac&V12" (DX(a)).
Further we denote
¥ ={ueC*(DX(a)) |[u=0 on ML Ul3}. (25)

LetV;, be the closure of the sé in the spac&V12" (DX(a)).
We denote by
H Z{QE(U, W) eVq ><V2} (26)

the space of test functions (i.e. such functions with finitergy which satisfy stable boundary
conditions).

We use the principle of virtual displacement to get a vavrai formulation of the problem:

Let 0o € 2 (D*(ar)) be given, which specifies the displacement on the bounBaryy its
traces. We are looking far € .7 (D¥(a)) such that

a-— ﬁo S H, (27)

Theorem. The problem (27) - (28) has the unique solution.

Proof: The proof based on the Lax-Milgram theorem is too long anldrimal to be published.

2 Numerical Experiment

The numerical model, describing the course of experimem¢asurements of rheological prop-
erties of melt glass, was created.

The principle of experiment is based on the evaluation offdhee (viscoelastic) response
of isothermal cylindrical molten glass sample, which is poessed at a constant velocity. Nu-
merical simulation was realized in the commercial FEM (féritlements Method) code MSC
MARC.



The initial sample sizes were 20,3 mm (diameter) - 18,45 meig(it), the velocities of

compression were taken from the range 0,5 - 40 mm/s. The Maxwelel was used for
description of material behavior of FLOAT melted glass.
Viscosity of the shaped glass was defined according to therempnt, i.e.n = 10"%2 [Pa.s].
The modulus of elasticity was selected from the raBge- 2,5.10% 2,5.10° [Pa], molten glass
was assumed to be incompressible substance, i.e. The Romsstany = 0, 5.

Sticking conditions were presumed between glass and matahpcontact surfaces.
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Fig. 3. Distribution of the stress fields in the form of equivalent €laustress for compression
2,6 and 10 mm

The course of distribution of the stress fields in the formhaf équivalent Cauchy stress
for 3 different stages (compression 2, 6 and 10 mm) are predém Fig. 3 (for velocity = 4
[mm/s]).

The courses of the force response for different elastic mhadeishown in Fig. 4. From the
figure it results that the elastic modulus influences onlyfitisestage of the experiment, second
one is only controlled by viscous flow.

Conclusion

In the contribution the model for evaluation of descriptiminviscoelastic force response to
compression loading was suggested. Integration of theelastic model of the Maxwell type
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Fig. 4. Course of computed load forces

to the mathematical model allowed fair description of theéaresponse according to character
of the realized experiments [6]. The shape course of defomess sample in the experiment

was visibly similar to the computed one. Development of tleasured load force showed the
similar tendency but values became more different from tmeputed ones during the experi-

ment.
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NUMERICKE HODNOCEN REOLOGICKEHO EXPERIMENTU

Uvazujeme viskoelastidk prosé podeperg, rot&né symetricle tleso peva spojee s podkla-
dem. Téleso je zatzovano plochou lisovdcelist, ktera se pohybuje ve sénu osyz konstantin
rychlost v. V pfediazerem @ispévku je p&itana silowa odezva. Toam umani porovravat nu-
mericke Wsledky s ré@lnymi daty z reologiclgch experiment. Je odvozena vagiai formulace
Ulohy a transformo&na do alcowch souadnic. Cale jsou prezent@ny numerick wsledky.

NUMERISCHEBEWERTUNG EINES RHEOLOGISCHENEXPERIMENTS

Wir betrachten einen viskoelastischen, einfach urilertgn, drehsymmetrischendiper, der
fest mit dem Untergrund verbunden ist. Deorger wird mit der Fhche eines Presskiefers
beschwert, die sich in Richtung der Achse aus der konstanesth®vindigkeit v bewegt.
Im vorliegenden Beitrag wird das Kraftecho berechnet. Dresoglicht uns einen Vergleich
der numerischen Ergebnisse mit den realen Daten aus deloglsaten Experimenten. Da-
raus wird eine Variantenformulierung der Aufgabe abgeteind in Walzenkoordinaten trans-
formiert. Weiter werden numerische Ergebnissi&spntiert.

NUMERYCZNA OCENA EKSPERYMENTU REOLOGICZNEGO

W artykule rozwaane jest wiskoelastyczne, prosto podparty, rotacyjniaesgyczne ciato
na state paczony z podizem. Na ciatlo oddziatuje powierzchnia sekzprasugcych, kéra
porusza € w kierunku osi stala predkdciav. W opracowaniu obliczana jest reakcja sitowa.
Umozliwia to potbwnanie wynilbw numerycznych z realnymi danymi z eksperynaenteo-
logicznych. Okrélona jest zmienna formuta zadaniagik jest transformowana do w@pzed-
nych cylindrycznych. Naspnie zaprezentowano wyniki numeryczne.



