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Abstract

The paper deals with the problem of non-parametric stedisthodeling of 2-dimensional sur-
faces from observed data, i.e. the regression analysis.energl, the model is constructed
from a set of basal functions, as are the splines, gaussiahethers. However, such model-
ing means to estimate a large set of parameters (locatiohsofional units and parameters
of their combination). We shall present two approachesahig reduction of the number of
needed parameters. Namely, a well known method of proegiosuit, and the less known
method of Gordon surface. Further, we shall analyze passiiious consequences of sparse
data to precision of model and uncertainty of predictiontiMées will be illustrated in artificial
examples.

Keywords: Statistics; regression analysis; splines; projectiorspitir Gordon surface; predic-
tion error.

Introduction

Though the main concern of the paper is two-dimensionakssgon analysis, we shall start,
in Part 1, with a 1-dimensional case. We think that it is thetlyeay how to show the way
of modeling curves from functional units and the problemsnaxted with such an approach.
The use of localized units (as B-splines or gaussians) isesoent when we wish to describe
a non-regularly varying function (a signal, for instancelpwever, as we shall see, the use of
combination of localized units requires also sufficienttycalized’ (i.e. dense) measurements,
to avoid unexpected non-precision of model performance.

This problem will be illustrated first in the case of a 1-dirsiemal curve, variance of pre-
diction will be computed, and its relationship with measoeat design shown. Then, in Part 2,
we shall devote to the 2-dimensional regression models. Ak iecall some approaches how
the number of involved parameters can be reduced. Then baied overview of the projection
pursuit method, we concentrate, in Part 3, to the model oactgin via so called Gordon sur-
face. Even here, we shall analyze the relation between @sigrdand model (and prediction)
uncertainty.

In Part 1 we shall employ also the MCMC (Markov chain Monte Capliamcedures in the
framework of the Bayes statistical inference. The reasonasMCMC generates a represen-
tation of posterior distribution of estimated model. Witk aid it is possible to visualize the
variability of estimates. Simultaneously, estimatedribstion of predicted values is obtained.
More details on the MCMC methods can be found elsewhere, $tairce in [5] and also in [8].



1 Nonparametric Regression

Let us consider first a pair of one-dimensional random vée&g¥ (input variable, predictor)
andY (output variable, response) and a general response mdaetdiby a density (y; r (X)) of
conditional probability ofY for givenX = x, wherer (x) is a smooth non-parametrized response
function. This definition involves, as a special case, thadard regression modék=r(X) + &,
wheres is a random Gauss noise with zero mean and an unknown vargnce

There are essentially two different ways how to estimatenomk functionr. The first
consists in the local (e.g. kernel) smoothing. The othereggh, studied here, employs the
approximation of (x) by a combination of functions from some functional basis: iRstance
radial basis functions (gaussians), polynomial splinesigmetric functions or wavelets are
popular choices. Hence, the model of response functionheaf®tm

M
r(x) = a’B(xB) = _ZlaJBj (xB), 1)
j=

wherea = (a1,...,am)’ is a vector of linear parameterB; are basis functions anff =
(B1,-..,Bw)" is a vector of parameters of the basis functions (e.g. knbgplnes, centers
and scales of radial functions). While the estimates afan be obtained directly from linear
regression context, estimation Bfis a difficult optimization problem. As a solution to the
nonlinear problem for coefficienf® as well as to optimal choice ®f, it is possible to use the
Bayes methodology in combination with the Markov chain Mo@tglo (MCMC) algorithms.

In this framework, the parametfris considered to be a multi-dimensional random vector, with
a prior distribution satisfying certain constraint. SitameouslyM is also regarded as a random
variable, with some prior 0f0,1,2; ..., Mmax}-

1.1 Modeling via B—splines

Polynomial splines are constructed from piece-wise patyiats which are joined together in
the 'knots’. At these points, continuity conditions arefifldd. We mostly deal with the cubic
splines which have continuous two first derivatives. Thegeseveral variants of functional
bases creating the spline, we prefer the B—splines as thelp@akzed. Let us consider an
interval[a, b] and a set oM different inner knotsffp =a < 1 < ... Bu < Bm+1 =D, letus add
six other 'dummy’ knot3_j = a— j(B1—a), Bu+1+j = b+ j(b—PBm), j =1,2,3. One way
how to define the B—spline function, following for instancé, mploys divided differences:
j+2
Bj(xB)= Y {(X—Bk)i/

k=)]—2

j+2
(Bk - BS) } )

s=j—2,s#k
for j=-1,0,1, ... M,M +1,M + 2. Here, function(u); meansu-1[u > 0]. Thus,M inner
knots defineM -+ 4 basal cubic units. Each urij is zero outside the intervaBj_», Bj;2). The
interference of two neighboring units depends on positibthe knots, a change of one knot
has effect on several nearest units only (e. g. in the caseliot 8—splines, five units have to
be updated when one knot is changed). It means that in modelgiiange of ong results in
updating of only fiveaj, j =k—2,k—1,k k4 1,k+2. This leads to the reduction of necessary
computations.

1.2 Optimal Number of Units

It is expected that the model with more units decreasesuaki@riance (or increases the like-
lihood). Therefore we should examine whether the additiban@ unit from corresponding



functional basis improves the fit of the model 'sufficientlin a non—Bayes setting, this is often
measured by a penalty criterion, e.g. Akaike’s AIC, SchvgaBIC, GCV (see also Friedman
[4]). Similar is the criteriongd equMy), wherey is a number from(0.5,1), 3 is the estimate
of residual variance?, M denotes the number of used unisis the extent of data sample.

Equivalently, we can obtain the penalty as a part of the @acep probability in the MCMC
algorithm. Let us assume that the prior for variablas specified in such a way that the pro-
portionQo(M*)/Qp(M) < 1 if M* > M. For instance, if prior is proportional to efpM /NY).
Such a choice decreases the chance to accept a model witr nigimber of units, if the gain
of that model (measured by likelihood ratio) is low. The diddi of new units can be comple-
mentary controlled by a rule guaranteeing a reasonablemairdistance between them and by
prescribing maximal number of units.

Source: Own

Fig. 1. Left: Data, estimated regression curve (central) anPlo bands. Right: Variability of
MCMC generated posterior representatiof’r(x)

Example 1. 160 uniformly distributed pointg; were sampled in (0,4) (6,10), and output
valuesy; = r(x) + & were then generated, where

r(x) = xsin((%%) 2)

and & were independent identically distributed Gauss randornabtas with mean zero and
varianceg? = 4. For estimation of function(x), the cubic B-splines were used. As regards the
prior for their knots, we used uniform distribution onthé 8 < 1 < B> < ... < fm < 10}.
100 loops of the Markov chain generation were performed. [©op updated sequentially
all components of3, with possible change dfl. It means that it contains between 20 — 50
iterations of model, depending on actual numidier

Only the final result after each loop was registered as a newbaeof the chain;(™. The
chain obtained in such a manner has a rather low autocooreldthe average of this sequence
of functions, after skipping firg= 20 of them,

(= 3 (2



serves then as the final estimate ©f), empirical variance or the quantiles of the &6V (x), m=
s+1,...,S} yield information about the uncertainty of the estimate isegx. In the case of
Gauss random noise, unknown parametés estimated from the averaged squares of residuals
of the preceding iteration. The procedure started from frainiinits defined by 3 inner knots
located equidistantly inside (0,10). It converged to firits, with final estimaté? = 4.18.
Figure 1, left plot, shows the poin{s;, yi}, the estimate(X) andr{x) + 2& intervals connected
to two bands. However, the right plot shows the variabiliyast 80 members of chaift™ (x).

It can be taken as a representation of posterior distribudfo (x), quite sufficient for illustra-
tion of certain important features. Namely, it is seen hoanthriability of estimate increases in
the region with sparse data. It also means that there iresaascertainty of prediction of true
values ofr(x) (compare also discussion in [2], Ch. 10). A vertical cut at\egik represents
Bayes prediction distribution of correspondir(g).
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X

Source: Own

Fig. 2. Evaluation of function Vx), in the case without data in (4,6) (left), with one measure-
ment added to x 5 (center), from data distributed uniformly through wholel(@), (right)

1.3 Variance of Prediction

In the present part we shall recall some well known resuléitjtying the variance of prediction
in linear regression model, see for instance [1], and adegohtto our case. For simplicity, let
us assume that the functional units, i. e. their number andriparameters, are fixed. Hence,
we solve the linear regression case

Yi =BT(Xi)-d—|—£i, i=1...,n

whereg are the i.i.d. normal random variable$ (0, d?), B(x) = (B1(X),...,Bu(x))" are
functional units (e. gB-splines) evaluated at data-poimts- (Xy,...,X,)". DenoteB then x M
matrix with rowsBT (), A= (BT -B)~%, y = (y1,...,yn)". Then the least squares method
yields the estimate

G=A-B".y d@—a~.1(0,0%A),

A

whereQ is the null vector. Further, at a selected pditite prediction of/(z) isy(z) =B" (2)- 4.
Its expectation is(z), while its variance equals

var(y(z)) =B (z)-A-B(2) - 2.

We see that it depends both on défe= A(x)) from which the model was estimated, and on
position of prediction point.



On this basis we can study interaction of data design andghi@d error, particularly the
influence of additional measurements to model precisionilléstration, let us return to Exam-
ple 1. Let the model be constructed fr@¥splines defined by 7 inner knots placed equidistantly
inside (0, 10), so that the model contaimMd = 11 B-spline functions. Figure 2 shows function
V(2) =BT (2) AB(2) in 3 cases. The left plot corresponds to data shown in Figure Iwithout
measurements in intervéd, 6). The central plot corresponds to the situation when one mea-
surement was added xo= 5. Finally, the right-hand plot shows functidf{z) computed from
data distributed uniformly over whole intervd, 10), without any gap.

2 Multi-Dimensional Case

Now we assume that the input varialde= (Xy, ..., Xp) is ap-component vector. In general, the
multivariate regression modeling has to deal with functiohinteractions of several predictors.
Such a function is as a rule modeled by a tensor product olanensional units. The problem
with multivariate units is not only that their number grovexonentially) with dimension, but
that there also grows a number of units (and parametersiwvare influenced by updating of
one component of ‘inner’ parameter (e. g. of one knot). Fstance, a function(x) in R? can
be modeled as

M1 My

r(X) = oo+ ) ajoBj(x1,B)+ 3 akCu(X2,¥)+ ) > ajkBj(x1,B)C(x2,¥).  (3)
=1 k=1

Such a function containkl; + My inner parameterg;, y, but 14+ M + Mz + M1 My ‘linear’
parametersxjc. The high number of parameters leads naturally to the higle tieeded for
(iterative, as a rule) computations. That is why there aengits to reduce the dimensionality
of ‘decision space’ of the model construction. Especiatly methods based on the idea of
decision tree are successful. The most known one is the CARG$@ication and Regression
Tree), giving a histogram-like result, and its modificatigiming a continuous function, the
MARS (Multi-dimensional Adaptive Regression Splines) [4].

In the simplest scenario the multi-dimensional model haadditive form. The response
functionr(x) is then a sum op functions of one variable. In our context

P M p
r(x) IkzljzlajkBjk(Xk,Bk) = k;af(Bk(Xk,ﬁk),

vectorsf, and valuesdVl, k=1,...,p, are optimized iteratively. Most of algorithms innovate
sequentially one component after another. Naturally, biéir of such a model is rather limited.

2.1 Projection Pursuit

This is one of the approaches how to model the multi-dimeradimteractions of input variables
[7]. The PP estimator has the following form

si(B}x),

M =

r (x) = |

=1

l.e. it is the sum of 1-d functions of linear combinationstétamns) of covariates. Now, the ob-
jective is to find an optima&K and optimalp-dimensional vectorf ;. The problem of estimation
of non-parametrized functiorss is then solved in the framework of additive model. The space



of B’sis limited to such thalB;| = 1. Notice also that the rotation RP is fully described by an
angle havingo— 1 components, each with values[i 1. So that the dimension of nonlinear
parameter is actuallp — 1. For instance, ifR? the angles of rotations can be ordered to a se-
qgquence X y1 < yo < ... < ¥k < T, so that the process of solution is quite similar to thatidgal
with optimal location of knots ifRL. Thus, the problem of construction of 2-dimensional model
is changed to two nested 1-dimensional problems.

On the other hand, it is well known that the projection pursUnighly sensitive, that the de-
pendence of’s is rather non-smooth. The method is implemented to sepepalar statistical
software packets (S-plus, R).

2.2 Variance of Prediction in PP

We shall study now the error or prediction in a similar managiin part 2.4. Again, let us
assume that the angles of rotatigpsk = 1, ... K, are selected, and that also functional units
Bjk(2) are already fixedj = 1,2,..., M for k-th projection. Thus, we shall deal with the model

K Mg

y¥) = > > ajBik(z),

k=1j=1

where we denoteds = Yk x X = COSyk - X1 + Siny - X2 the projection of poinX = (x1,X2) to
directiony. Thus, we again deal with the linear regression scheme

yi=B'(x) a+&,

whereB(x;) = {Bjk(zki), i=L1...,M,k= 1,...,K}, Zi = W*Xi, @ = {aj}, its dimension is
M =K My, and(yi,X), i = 1,...,n, are measurements. Formally the case is the same as the
case discussed in 2.3. A numerical illustration is a parba@ir&ple 2 in the next section.

3 A Model of Gordon Surface

The Gordon surface [6] is one of constructions of smoothes@s used mostly in engineering
applications, some others from this set are for instanceuExin Surface, Ruled Surface or
Coons Patch. We shall adapt it here to the needs of 2-dimeaistatistical regression analysis.
Let us consider a surfacggiven by a smooth functiog(x), x € X C R,. We assume that

Sis given in a form of the Gordon surface, namely: Consider @EKtlinesLy (k=1,...,K)
crossing the domaiX. Cuts of surfaces above linedy are smooth functiong(z), z € L.
For each poink € X, let x(k) be its projection td_x. Further, letR¢(X) be a weight of poink
w.r. to lineLx. We assume tha®,(x) = 1 if x € L, and for points lying between linds, the
weight is given by a convenient (sufficiently smooth) kerfugiction, e. g. by a Gauss kernel,
with propertys K | R¢(x) = 1. Then let us define

r(x) =Y Ra(X)-rc(x(k)) (4)

as a surface value at Regarding the functiong(z), it is assumed that they are linear combi-
nations of 1-dimensional functional units (e Bysplines or radial-basic functiongymn(z)

My
rv(2) = lekm¢km(2) =W 9y (2).



Hence, each such function contaidg unknown parametensi, and localized unit®ym(z).
The units, as well as blending (mixing) weighRg(x), should be selected by an analyst. It is
seen that the model has a similar feature as the projectimuipuinstead of beams given by
rotations the core is given by a net of lines, and the prajaadf data points is weighted. The
simplest choice of lineky are equidistant vertical (or horizontal) lines crossiig

3.1 Statistical Model and Estimation

Let us now imagine a set of measuremdptsx;), i = 1,...,n of the surfaceSat pointsx; with
errorsg; (i. e. a regression model)

i =r(Xi)+ &,

& are centered independent Gauss variables witl vawo?. The objective of statistical anal-
ysis is to estimate unknown parametag, compute the variance of estimates and also of
predictionr(x) at a pointx, based on these estimates. We shall use the following agmroa
First, functionsry will be estimated. Them(z) will be propagated to whol&X by blending
given in expression (4).

Again, denote byx;(k) projections of points to linesLy. Let R; be again the weight
of x; w.r. to lineLg. Further, denoty = (y1,...,yn), for eachk denote(Dk a matrixn x My
with elementspmi(xi(k)), P the diad R} matrix n x n and Gy diag{ (R 1/2} matrix. Let
us eventually omit indicessuch that; = 0. A natural estimator of parametem is then the
result of weighted least squares method,

1

W = (P RPy) PRy,

corresponding to a regression moglet ®,wy + Gy €, € = (&1,...,&,) . It follows thatwy =
Wi+ Ay - D B Gy g, with A = (P} R Py) 1 therefore B, = wy and

var(wy) = Ac- a2.

In general, we can consider one set of weigRigx), for blending functiongy, and a different
set,F(X), as weights used in the estimation procedure. Naturally,possible to sei(x) =
Rk(X). As regards the large sample (asymptotic) behavior of thegature, it is natural to adopt
the approach common in statistical smoothing methods. Narasn increases, the width
of kernels is controlled by a decreasing window-width, whsimultaneously the number of
lines,K, should increase, both with a proper rate. In such a way,dhsistency of estimation
procedure can be guaranteed.

3.2 Prediction

Now, letx be an arbitrary point fronX, different from allx;. Predicted value suggested by (4),
where parametem are substituted by their estimates, is given as

sz ) Wy (X(K)),

while its 'true’ value (which we do not know) would bgx) = r(x) + &, wherer(X) is given
by (4), & is the same random variable like al] independent on them. We are interested in the

difference «

(%) = r(X) = Y Re(X) (Wi —X)" @1c(X(K)).

k=1



Let us denote bw = (W}, W,,...,wj )’ the vector of lengtiM x 1, whereM = S, M, con-
taining all parameters, similarly faw. Further,

b(x) = (Ra(X) $1(X)", Ro(X) §(X)",.....Re (%) $c (X))’
is alsoM x 1 vector, depending ox Then, we obtain that
F(X) —r(x) = b'(x) (W—w).
Its expectation is zero, while its variance equals
var(f(x) —r(x)) = b'(x)- 7 - b(x),

where ¥ is theM x M covariance matrix cqw — w). It is, naturally, symmetric, positive
definite almost surely, and composed from blogksk, / =1,...,K, of dimensionV x M:

Vie = E{(Wi—wi)- (W, —wp)'} =
= E{Ak(DLH(GkEE/Gng(DgAg}:AkCDf(H(GkG[ngCDgAg'O'Z.

“Diagonal” blocks are thel, = Ay - a2. Finally, the differenc&(x) — y(x) has the expectation
zero, too, and variand#(x) 7 b(x) + 2.

As the matrix?” depends on the design of observed poxighe variability of prediction
at a pointx depends on information in its neighborhood. We thus, in tlewing example,
see the same phenomenon as in Example 1, i.e. a growing aimtgidf model in sparse data
regions.

The model considered here contaMs= SK_; My parameters. In a standard regression
setting the number of observations shouldhhe M to guarantee a reliable estimation. Notice
that in the Gordon surface model> max My suffices.

3.3 Analysis of Prediction Variance

As the direct computation of variance of prediction is hexther complicated (also due the
presence of weighting functions) we shall prefer “emplifidaustration utilizing the following
example.

Example 2. The data of size = 200 were generated from the functioix) = x; - sin(xy/3) +
sin(xz/2+ 1) and additional standard Gauss random noise. For estimat@fixed all 'nonlin-
ear’ components of the Gordon surface, namely: Number e8], was fixed to 7, they were
located horizontally, equidistantly if®, 10). To fit 1-dimensional curves along these lines, the
cubic B-splines were used. For them, 5 equidistant knots wiex@ed along each line. The
same Gauss kernels were used both for weighting and blending

In order to evaluate variability of estimates, the analygs repeatetil = 200 times. Fig-
ure 3 shows the mean and variance from 200 surfaces, ediirftata full data covering the
whole region(0,10) x (0,10). Then, Figure 4 displays the mean and variance of 200 s face
estimated from data with missing valueg#6) x (4,6) square. There is no significant differ-
ences between the means, they correspond, more-less, tautiesurfacer (x). However, the
large variance in Figure 4 is the warning that one cannotjuedyyon estimated trend, that the
inference has to be accompanied by the analysis of variamzk donfidence, concerning the
parameters). Notice also that the peak of variance has tiiealedirection (inX x Y plane),
I.e. orthogonal to line&y. It is caused by mixing of curves constructed along the |itl@s
mixing propagates the peak in tkeirection.



I

.02;:00 "

AN IS “
NN

Nyatlnie! ()
o‘.‘{t\‘\‘%\\“\\‘:&:&&:&"li
NN “‘\Q\\“‘\““‘O '
SONERRER ]
N\

SN

e

S>>

Source: Own

Fig. 3. The mean (left) and variance (right) estimated from the dat@ering uniformly the
whole region(0,10) x (0,10)
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Fig. 4. The mean (left) and variance (right) estimated from the deith missing values in
region (4,6) x (4,6)

3.4 Comparison with Projection Pursuit

The same data as in Example 2 were repeatedly (With 200 repetitions) analyzed with the
projection pursuit method. Again, the structure of modes fixed, we selected just four angles
equidistantly inside€0, 1), each projection was fitted by B-splines with 5 inner knotsited
equidistantly between minimum and maximum value of pra@dets. Such a selection was
quite satisfactory, resulting surface fitted well (not veotkan the Gordon surface shown on
preceding figures). Figure 5 shows estimated variance oftsgs.e. from 200 repetitions), left
plot corresponds to full data, the right plot again to datthaigap in the regiof4, 6) x (4,6).
The variance in the second case is still significant, howeusarh lower compared to results of
Gordon model application. It is probably caused by the stinecof core lines (parallel lines in
Gordon construction, a rosette in projection pursuit).

Conclusion

The objective of the paper was to examine several ways hovonstaict statistical model
of 2-dimensional surfaces and to study advantages andgmnshbf presented methods, from



Source: Own

Fig. 5. Estimated variance of projection pursuit regression, frathdata (left), from the data
with missing values in regiof4, 6) x (4,6) (right)

the point of their accuracy, flexibility, and also computatl effort. The main attention was
focused on the method of Gordon surface construction, atieetstudy of relationship between
the design of data (input variables), selected set of Ipedlifunctional units, and resulting
variance of model estimate and prediction.
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O DVOU FLEXIBILNICH METODACH PRO DVOUROZMERNOU REGRESN
ANAL YZU

Prace je ¥novana neparametriému statistickmu modelo@an dvourozn&rnych ploch na a-
kladé pozorovajich dat, tj. dvourozr@rré regreshanalze. Model je konstrucdn jako kom-
binace jednoduglth bazowch funkd, jako jsou spliny, gausany apod. Neyhodou takoeho
pristupu je pateba odhadnout vet(kmndstvi parametll. Budou ulazany dva [fistupy, kteé
pocet potebrych paramefi redukuj. A to metoda zvaa projection pursuit, ktér je statis-
tikim dolfe zrama, a pak mré zrama metoda konstrukce tzv. Gordonovy plochyar@vei
také ukdzeme, jak neptomnost dat v Liité oblasti zv§uje variabilitu modelu a tedy i netitost
predikce. Metody budoufpdvedeny na uglych prikladech.

UBER ZWEI FLEXIBLE METHODEN FUR EINE ZWEIDIMENSIONALE
REGRESSANALYSE

Diese Arbeit befasst sich mit einer nichtparametrischatistischen Modellierung zweidimen-
sionaler Fachen auf Grundlage beobachteter Daten, d. h. mit der zwverdiionalen Regress-
analyse. Das Modell ist konstruiert als Kombination eihtcBasenfunktionen wie z. B. Spli-
nes, Gaussian’sche Funktionen&au. Als Nachteil eines solchen Ansatzes erweist sicht die
Notwendigkeit, eine grol3e Menge Parameter ziatn. Es werden zwei Aaize gezeigt,
welche die Anzahl der erforderlichen Parameter reduziexd,zwar projection pursuit, welche
den Statistikern wohl bekannt ist, und dann die weniger beteaKonstruktionsmethode der
Gordon-Fhchen. Gleichzeitig zeigen wir, wie die Abwesenheit vonddaauf einem bes-
timmten Gebiet die Variabiliit des Modells und damit auch die Unbestimmtheit dédition
erhbht. Die Methoden werden ariikstlichen Beispielen vorgéfirt.

O DWU ELASTYCZNYCH METODACH DO DWUWYMIAROWEJ ANALIZY
REGRESJI

Artykut poSwiecony jest nieparametrycznemu statystycznemu modelovpamvierzchni dwu-
wymiarowych na podstawie obserwowanych danych, tj. dwuisyowej analizie regresji.
Model skonstruowano jako patzenie prostych funkcji bazowych, takich jak splajny,ssaany

itp. Wada takiego podéicia jest konieczré oszacowania digj liczby paramefw. Pokazano
dwa podejcia ograniczajce liczle niezlednych paramebw. To metoda nazywana projec-
tion pursuit, kéra jest dobrze znana statystykom oraz mniej znana metoastriabcji tzw.
powierzchni Gordona. Jedno&ege pokazano, jak brak danych w pewnym obszarzeksvia
zmienn& modelu, czyli take niepewngt prognozowania. Metody zaprezentowano na sztucz-
nych przyktadach.



