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Abstract

The paper deals with the problem of non-parametric statistical modeling of 2-dimensional sur-
faces from observed data, i.e. the regression analysis. In general, the model is constructed
from a set of basal functions, as are the splines, gaussians and others. However, such model-
ing means to estimate a large set of parameters (locations offunctional units and parameters
of their combination). We shall present two approaches allowing reduction of the number of
needed parameters. Namely, a well known method of projection pursuit, and the less known
method of Gordon surface. Further, we shall analyze possible serious consequences of sparse
data to precision of model and uncertainty of prediction. Methods will be illustrated in artificial
examples.

Keywords: Statistics; regression analysis; splines; projection pursuit; Gordon surface; predic-
tion error.

Introduction

Though the main concern of the paper is two-dimensional regression analysis, we shall start,
in Part 1, with a 1-dimensional case. We think that it is the best way how to show the way
of modeling curves from functional units and the problems connected with such an approach.
The use of localized units (as B-splines or gaussians) is convenient when we wish to describe
a non-regularly varying function (a signal, for instance).However, as we shall see, the use of
combination of localized units requires also sufficiently ’localized’ (i.e. dense) measurements,
to avoid unexpected non-precision of model performance.

This problem will be illustrated first in the case of a 1-dimensional curve, variance of pre-
diction will be computed, and its relationship with measurement design shown. Then, in Part 2,
we shall devote to the 2-dimensional regression models. We shall recall some approaches how
the number of involved parameters can be reduced. Then, after brief overview of the projection
pursuit method, we concentrate, in Part 3, to the model construction via so called Gordon sur-
face. Even here, we shall analyze the relation between data design and model (and prediction)
uncertainty.

In Part 1 we shall employ also the MCMC (Markov chain Monte Carlo) procedures in the
framework of the Bayes statistical inference. The reason is that MCMC generates a represen-
tation of posterior distribution of estimated model. With its aid it is possible to visualize the
variability of estimates. Simultaneously, estimated distribution of predicted values is obtained.
More details on the MCMC methods can be found elsewhere, for instance in [5] and also in [8].
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1 Nonparametric Regression

Let us consider first a pair of one-dimensional random variables X (input variable, predictor)
andY (output variable, response) and a general response model defined by a densityf (y; r(x)) of
conditional probability ofY for givenX = x, wherer(x) is a smooth non-parametrized response
function. This definition involves, as a special case, the standard regression modelY = r(X)+ε,
whereε is a random Gauss noise with zero mean and an unknown varianceσ2.

There are essentially two different ways how to estimate unknown functionr. The first
consists in the local (e.g. kernel) smoothing. The other approach, studied here, employs the
approximation ofr(x) by a combination of functions from some functional basis. For instance
radial basis functions (gaussians), polynomial splines, goniometric functions or wavelets are
popular choices. Hence, the model of response function has the form

rM(x) = ααα ′BBB(x;βββ ) =
M

∑
j=1

α jB j(x;βββ ), (1)

where ααα = (α1, . . . ,αM)′ is a vector of linear parameters,B j are basis functions andβββ =
(β1, . . . ,βM)′ is a vector of parameters of the basis functions (e. g. knots of splines, centers
and scales of radial functions). While the estimates ofααα can be obtained directly from linear
regression context, estimation ofβββ is a difficult optimization problem. As a solution to the
nonlinear problem for coefficientsβββ as well as to optimal choice ofM, it is possible to use the
Bayes methodology in combination with the Markov chain MonteCarlo (MCMC) algorithms.
In this framework, the parameterβββ is considered to be a multi-dimensional random vector, with
a prior distribution satisfying certain constraint. Simultaneously,M is also regarded as a random
variable, with some prior on{0,1,2, . . . ,Mmax}.

1.1 Modeling via B–splines

Polynomial splines are constructed from piece-wise polynomials which are joined together in
the ’knots’. At these points, continuity conditions are fulfilled. We mostly deal with the cubic
splines which have continuous two first derivatives. There are several variants of functional
bases creating the spline, we prefer the B–splines as they arelocalized. Let us consider an
interval[a,b] and a set ofM different inner knots,β0 = a < β1 < ... βM < βM+1 = b, let us add
six other ’dummy’ knotsβ− j = a− j(β1−a), βM+1+ j = b+ j(b−βm), j = 1,2,3. One way
how to define the B–spline function, following for instance [9], employs divided differences:

B j(x,βββ ) =
j+2

∑
k= j−2

{

(x−βk)
3
+/

j+2

∏
s= j−2,s6=k

(βk−βs)

}

,

for j = −1,0,1, ... M,M + 1,M + 2. Here, function(u)+ meansu · 1[u > 0]. Thus,M inner
knots defineM +4 basal cubic units. Each unitB j is zero outside the interval(β j−2,β j+2). The
interference of two neighboring units depends on position of the knots, a change of one knot
has effect on several nearest units only (e. g. in the case of cubic B–splines, five units have to
be updated when one knot is changed). It means that in model (1) a change of oneβk results in
updating of only fiveα j , j = k−2,k−1,k,k+1,k+2. This leads to the reduction of necessary
computations.

1.2 Optimal Number of Units

It is expected that the model with more units decreases residual variance (or increases the like-
lihood). Therefore we should examine whether the addition of one unit from corresponding
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functional basis improves the fit of the model ’sufficiently’. In a non–Bayes setting, this is often
measured by a penalty criterion, e.g. Akaike’s AIC, Schwarz’s BIC, GCV (see also Friedman
[4]). Similar is the criterionσ̂2

Mexp( M
Nγ ), whereγ is a number from(0.5,1), σ̂2

M is the estimate
of residual varianceσ2, M denotes the number of used units,N is the extent of data sample.

Equivalently, we can obtain the penalty as a part of the acceptance probability in the MCMC
algorithm. Let us assume that the prior for variableM is specified in such a way that the pro-
portionQ0(M∗)/Q0(M) < 1 if M∗ > M. For instance, if prior is proportional to exp(−M/Nγ).
Such a choice decreases the chance to accept a model with higher number of units, if the gain
of that model (measured by likelihood ratio) is low. The addition of new units can be comple-
mentary controlled by a rule guaranteeing a reasonable minimal distance between them and by
prescribing maximal number of units.
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Fig. 1. Left: Data, estimated regression curve (central) and±2σ̂ bands. Right: Variability of
MCMC generated posterior representation r(m)(x)

Example 1. 160 uniformly distributed pointsxi were sampled in (0,4)∪ (6,10), and output
valuesyi = r(xi)+ εi were then generated, where

r(x) = xsin

(

( x
0.25

)2
)

and εi were independent identically distributed Gauss random variables with mean zero and
varianceσ2 = 4. For estimation of functionr(x), the cubic B-splines were used. As regards the
prior for their knots, we used uniform distribution on the set {0 < β1 < β2 < .. . < βM < 10}.
100 loops of the Markov chain generation were performed. Oneloop updated sequentially
all components ofβββ , with possible change ofM. It means that it contains between 20 – 50
iterations of model, depending on actual numberM.

Only the final result after each loop was registered as a new member of the chain,r(m). The
chain obtained in such a manner has a rather low autocorrelation. The average of this sequence
of functions, after skipping firsts= 20 of them,

r̂(x) =
1

S−s

S

∑
m=s+1

r(m)(x), (2)
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serves then as the final estimate ofr(x), empirical variance or the quantiles of the set{r(m)(x), m=
s+ 1, ...,S} yield information about the uncertainty of the estimate at given x. In the case of
Gauss random noise, unknown parameterσ is estimated from the averaged squares of residuals
of the preceding iteration. The procedure started from 7 initial units defined by 3 inner knots
located equidistantly inside (0,10). It converged to final 13 units, with final estimatêσ2 = 4.18.
Figure 1, left plot, shows the points{xi ,yi}, the estimate ˆr(x) and ˆr(x)±2σ̂ intervals connected
to two bands. However, the right plot shows the variability of last 80 members of chainr(m)(x).
It can be taken as a representation of posterior distribution of r(x), quite sufficient for illustra-
tion of certain important features. Namely, it is seen how the variability of estimate increases in
the region with sparse data. It also means that there increases uncertainty of prediction of true
values ofr(x) (compare also discussion in [2], Ch. 10). A vertical cut at a givenx represents
Bayes prediction distribution of correspondingr(x).

0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

X

V(X
)

0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

X
0 5 10

0

0.2

0.4

0.6

0.8

1

1.2

X

Source: Own

Fig. 2. Evaluation of function V(x), in the case without data in (4,6) (left), with one measure-
ment added to x= 5 (center), from data distributed uniformly through whole (0,10) (right)

1.3 Variance of Prediction

In the present part we shall recall some well known results quantifying the variance of prediction
in linear regression model, see for instance [1], and adapt them to our case. For simplicity, let
us assume that the functional units, i. e. their number and inner parameters, are fixed. Hence,
we solve the linear regression case

yi = BBBT(xi) ·ααα + εi, i = 1, . . . ,n,

whereεi are the i.i.d. normal random variablesN (0,σ2), BBB(xi) = (B1(xi), . . . ,BM(xi))
T are

functional units (e. g.B-splines) evaluated at data-pointsxxx = (x1, . . . ,xn)
T . DenoteBBB then×M

matrix with rowsBBBT(xi), AAA = (BBBT ·BBB)−1, yyy = (y1, . . . ,yn)
T . Then the least squares method

yields the estimate
α̂αα = AAA·BBBT ·yyy, α̂αα −ααα ∼ N (OOO,σ2 ·AAA),

whereOOO is the null vector. Further, at a selected pointz the prediction ofy(z) is ŷ(z) = BBBT(z) · α̂αα.
Its expectation isr(z), while its variance equals

var
(

ŷ(z)
)

= BBBT(z) ·AAA·BBB(z) ·σ2.

We see that it depends both on data(AAA = AAA(xxx)) from which the model was estimated, and on
position of prediction pointz.
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On this basis we can study interaction of data design and prediction error, particularly the
influence of additional measurements to model precision. For illustration, let us return to Exam-
ple 1. Let the model be constructed fromB-splines defined by 7 inner knots placed equidistantly
inside(0,10), so that the model containsM = 11 B-spline functions. Figure 2 shows function
V(z) = BBBT(z)AAABBB(z) in 3 cases. The left plot corresponds to data shown in Figure 1, i. e. without
measurements in interval(4,6). The central plot corresponds to the situation when one mea-
surement was added tox = 5. Finally, the right-hand plot shows functionV(z) computed from
data distributed uniformly over whole interval(0,10), without any gap.

2 Multi-Dimensional Case

Now we assume that the input variableXXX = (X1, . . . ,Xp) is ap-component vector. In general, the
multivariate regression modeling has to deal with functions of interactions of several predictors.
Such a function is as a rule modeled by a tensor product of one-dimensional units. The problem
with multivariate units is not only that their number grows (exponentially) with dimension, but
that there also grows a number of units (and parameters) which are influenced by updating of
one component of ‘inner’ parameter (e. g. of one knot). For instance, a functionr(xxx) in R2 can
be modeled as

r(xxx) = α00+
M1

∑
j=1

α j0B j(x1,βββ )+
M2

∑
k=1

α0kCk(x2,γγγ)+∑∑α jk B j(x1,βββ )Ck(x2,γγγ). (3)

Such a function containsM1 + M2 inner parametersβ j , γk, but 1+ M1 + M2 + M1M2 ‘linear’
parametersα jk. The high number of parameters leads naturally to the high time needed for
(iterative, as a rule) computations. That is why there are attempts to reduce the dimensionality
of ‘decision space’ of the model construction. Especially the methods based on the idea of
decision tree are successful. The most known one is the CART (Classification and Regression
Tree), giving a histogram-like result, and its modificationgiving a continuous function, the
MARS (Multi-dimensional Adaptive Regression Splines) [4].

In the simplest scenario the multi-dimensional model has anadditive form. The response
functionr(xxx) is then a sum ofp functions of one variable. In our context

r(xxx) =
p

∑
k=1

Mk

∑
j=1

α jkB jk(xk,βββ k) =
p

∑
k=1

ααα ′
kBBBk(xk,βββ k),

vectorsβββ k and valuesMk, k = 1, . . . , p, are optimized iteratively. Most of algorithms innovate
sequentially one component after another. Naturally, flexibility of such a model is rather limited.

2.1 Projection Pursuit

This is one of the approaches how to model the multi-dimensional interactions of input variables
[7]. The PP estimator has the following form

r∗(xxx) =
K

∑
j=1

sj(βββ ′
jxxx),

i.e. it is the sum of 1-d functions of linear combinations (rotations) of covariates. Now, the ob-
jective is to find an optimalK and optimalp-dimensional vectorsβββ j . The problem of estimation
of non-parametrized functionssj is then solved in the framework of additive model. The space
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of βββ ’s is limited to such that|βββ j |= 1. Notice also that the rotation inRp is fully described by an
angle havingp−1 components, each with values in[0,π]. So that the dimension of nonlinear
parameter is actuallyp−1. For instance, inR2 the angles of rotations can be ordered to a se-
quence 0≤ γ1 < γ2 < ... < γK < π, so that the process of solution is quite similar to that dealing
with optimal location of knots inR1. Thus, the problem of construction of 2-dimensional model
is changed to two nested 1-dimensional problems.

On the other hand, it is well known that the projection pursuit is highly sensitive, that the de-
pendence onβββ ’s is rather non-smooth. The method is implemented to several popular statistical
software packets (S-plus, R).

2.2 Variance of Prediction in PP

We shall study now the error or prediction in a similar manneras in part 2.4. Again, let us
assume that the angles of rotationsγk, k = 1, . . . ,K, are selected, and that also functional units
B jk(z) are already fixed,j = 1,2, . . . ,Mk for k-th projection. Thus, we shall deal with the model

y(xxx) =
K

∑
k=1

Mk

∑
j=1

α jk B jk(zk),

where we denotedzk = γk ⋆ xxx = cosγk · x1 + sinγk · x2 the projection of pointxxx = (x1,x2) to
directionγk. Thus, we again deal with the linear regression scheme

yi = BBBT(xxxi) ·ααα + εi,

whereBBB(xxxi) =
{

B jk(zki), j = 1, . . . ,Mk, k = 1, . . . ,K
}

, zki = γk ⋆xxxi, ααα = {α jk}, its dimension is
M = ∑K

k=1Mk, and(yi,xxxi), i = 1, . . . ,n, are measurements. Formally the case is the same as the
case discussed in 2.3. A numerical illustration is a part of Example 2 in the next section.

3 A Model of Gordon Surface

The Gordon surface [6] is one of constructions of smooth surfaces used mostly in engineering
applications, some others from this set are for instance Extrusion Surface, Ruled Surface or
Coons Patch. We shall adapt it here to the needs of 2-dimensional statistical regression analysis.

Let us consider a surfaceSgiven by a smooth functiony(xxx), xxx∈ X ⊂ R2. We assume that
S is given in a form of the Gordon surface, namely: Consider a setof K linesLk (k = 1, . . . ,K)
crossing the domainX. Cuts of surfaceS above linesLk are smooth functionsyk(z), z∈ Lk.
For each pointxxx∈ X, let xxx(k) be its projection toLk. Further, letRk(xxx) be a weight of pointxxx
w.r. to line Lk. We assume thatRℓ(xxx) = 1 if xxx ∈ Lℓ and for points lying between linesLk the
weight is given by a convenient (sufficiently smooth) kernelfunction, e. g. by a Gauss kernel,
with property∑K

k=1Rk(xxx) = 1. Then let us define

r(xxx) =
K

∑
k=1

Rk(xxx) · rk (xxx(k)) (4)

as a surface value atxxx. Regarding the functionsrk(z), it is assumed that they are linear combi-
nations of 1-dimensional functional units (e. g.B-splines or radial-basic functions)ϕkm(z)

rk(z) =
Mk

∑
m=1

wkmϕkm(z) = www′
k ·ϕϕϕk(z).
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Hence, each such function containsMk unknown parameterswkm and localized unitsϕkm(z).
The units, as well as blending (mixing) weightsRk(xxx), should be selected by an analyst. It is
seen that the model has a similar feature as the projection pursuit, instead of beams given by
rotations the core is given by a net of lines, and the projection of data points is weighted. The
simplest choice of linesLk are equidistant vertical (or horizontal) lines crossingX.

3.1 Statistical Model and Estimation

Let us now imagine a set of measurements(yi,xxxi), i = 1, . . . ,n of the surfaceSat pointsxxxi with
errorsεi (i. e. a regression model)

yi = r(xxxi)+ εi ,

εi are centered independent Gauss variables with varεi = σ2. The objective of statistical anal-
ysis is to estimate unknown parameterswkm, compute the variance of estimates and also of
predictionr(xxx) at a pointxxx, based on these estimates. We shall use the following approach:
First, functionsrk will be estimated. Then̂rk(z) will be propagated to wholeX by blending
given in expression (4).

Again, denote byxxxi(k) projections of pointsxxxi to lines Lk. Let Pki be again the weight
of xxxi w.r. to line Lk. Further, denoteyyy = (y1, . . . ,yn)

′, for eachk denoteΦk a matrixn×Mk

with elementsϕmk(xxxi(k)), Pk the diag{Pki} matrix n× n andGk diag
{

(Pki)
−1/2

}

matrix. Let
us eventually omit indicesi such thatPki = 0. A natural estimator of parameterswwwk is then the
result of weighted least squares method,

ŵwwk =
(

Φ′
k Pk Φk

)−1Φ′
k Pk yyy,

corresponding to a regression modelyyy = Φk wwwk + Gk εεε, εεε = (ε1, . . . ,εn)
′. It follows thatŵwwk =

wwwk +AAAk ·Φ′
k Pk Gk εεε, with AAAk =

(

Φ′
k Pk Φk

)−1
, therefore Êwwwk = wwwk and

var(ŵwwk) = AAAk ·σ2.

In general, we can consider one set of weights,Rk(xxx), for blending functionsyk, and a different
set,Pk(xxx), as weights used in the estimation procedure. Naturally, itis possible to setPk(xxx) ≡
Rk(xxx). As regards the large sample (asymptotic) behavior of the procedure, it is natural to adopt
the approach common in statistical smoothing methods. Namely, as n increases, the width
of kernels is controlled by a decreasing window-width, while simultaneously the number of
lines,K, should increase, both with a proper rate. In such a way, the consistency of estimation
procedure can be guaranteed.

3.2 Prediction

Now, letxxx be an arbitrary point fromX, different from allxxxi . Predicted value suggested by (4),
where parameterswwwk are substituted by their estimates, is given as

r̂(xxx) =
K

∑
k=1

Rk(xxx) · ŵww
′
k ϕϕϕk(xxx(k)),

while its ’true’ value (which we do not know) would bey(xxx) = r(xxx)+ εx, wherer(xxx) is given
by (4),εx is the same random variable like allεi, independent on them. We are interested in the
difference

r̂(xxx)− r(xxx) =
K

∑
k=1

Rk(xxx)(ŵwwk−xxxk)
′ ϕϕϕk(xxx(k)).
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Let us denote bywww = (www′
1,www

′
2, . . . ,www

′
K)′ the vector of lengthM ×1, whereM = ∑K

k=1Mk con-
taining all parameters, similarly for̂www. Further,

bbb(xxx) =
(

R1(xxx)ϕϕϕ1(xxx)
′, R2(xxx)ϕϕϕ2(xxx)

′, . . . ,RK(xxx)ϕϕϕK(xxx)′
)′

is alsoM×1 vector, depending onxxx. Then, we obtain that

r̂(xxx)− r(xxx) = bbb′(xxx)(ŵww−www).

Its expectation is zero, while its variance equals

var(r̂(xxx)− r(xxx)) = bbb′(xxx) ·V ·bbb(xxx),

whereV is the M ×M covariance matrix cov(ŵww−www). It is, naturally, symmetric, positive
definite almost surely, and composed from blocksVkℓ, k, ℓ = 1, . . . ,K, of dimensionMk×Mk:

Vkℓ = E
{

(ŵwwk−wwwk) · (ŵwwℓ−wwwℓ)
′
}

=

= E
{

AAAk Φ′
k Pk Gk εεε εεε ′Gℓ Pℓ Φℓ AAAℓ

}

= AAAk Φ′
k Pk Gk Gℓ Pℓ Φℓ AAAℓ ·σ2.

“Diagonal” blocks are thenVkk = AAAk ·σ2. Finally, the differencêr(xxx)−y(xxx) has the expectation
zero, too, and variancebbb′(xxx)V bbb(xxx)+σ2.

As the matrixV depends on the design of observed pointsxxxi, the variability of prediction
at a pointxxx depends on information in its neighborhood. We thus, in the following example,
see the same phenomenon as in Example 1, i.e. a growing uncertainty of model in sparse data
regions.

The model considered here containsM = ∑K
k=1Mk parameters. In a standard regression

setting the number of observations should ben > M to guarantee a reliable estimation. Notice
that in the Gordon surface modeln > maxk Mk suffices.

3.3 Analysis of Prediction Variance

As the direct computation of variance of prediction is here rather complicated (also due the
presence of weighting functions) we shall prefer “empirical” illustration utilizing the following
example.

Example 2. The data of sizen= 200 were generated from the functionr(xxx) = x1 ·sin(x1/3)+
sin(x2/2+1) and additional standard Gauss random noise. For estimation, we fixed all ’nonlin-
ear’ components of the Gordon surface, namely: Number of lines,K, was fixed to 7, they were
located horizontally, equidistantly in(0,10). To fit 1-dimensional curves along these lines, the
cubic B-splines were used. For them, 5 equidistant knots wereplaced along each line. The
same Gauss kernels were used both for weighting and blending.

In order to evaluate variability of estimates, the analysiswas repeatedN = 200 times. Fig-
ure 3 shows the mean and variance from 200 surfaces, estimated from full data covering the
whole region(0,10)× (0,10). Then, Figure 4 displays the mean and variance of 200 surfaces
estimated from data with missing values in(4,6)× (4,6) square. There is no significant differ-
ences between the means, they correspond, more-less, to the’true’ surfacer(xxx). However, the
large variance in Figure 4 is the warning that one cannot relyjust on estimated trend, that the
inference has to be accompanied by the analysis of variance (and confidence, concerning the
parameters). Notice also that the peak of variance has the vertical direction (inX ×Y plane),
i. e. orthogonal to linesLk. It is caused by mixing of curves constructed along the lines, this
mixing propagates the peak in thex direction.
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Fig. 3. The mean (left) and variance (right) estimated from the datacovering uniformly the
whole region(0,10)× (0,10)
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Fig. 4. The mean (left) and variance (right) estimated from the datawith missing values in
region(4,6)× (4,6)

3.4 Comparison with Projection Pursuit

The same data as in Example 2 were repeatedly (withN = 200 repetitions) analyzed with the
projection pursuit method. Again, the structure of model was fixed, we selected just four angles
equidistantly inside(0,π), each projection was fitted by B-splines with 5 inner knots located
equidistantly between minimum and maximum value of projected xxx-s. Such a selection was
quite satisfactory, resulting surface fitted well (not worse than the Gordon surface shown on
preceding figures). Figure 5 shows estimated variance of results (i.e. from 200 repetitions), left
plot corresponds to full data, the right plot again to data with a gap in the region(4,6)× (4,6).
The variance in the second case is still significant, howevermuch lower compared to results of
Gordon model application. It is probably caused by the structure of core lines (parallel lines in
Gordon construction, a rosette in projection pursuit).

Conclusion

The objective of the paper was to examine several ways how to construct statistical model
of 2-dimensional surfaces and to study advantages and problems of presented methods, from
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Fig. 5. Estimated variance of projection pursuit regression, fromfull data (left), from the data
with missing values in region(4,6)× (4,6) (right)

the point of their accuracy, flexibility, and also computational effort. The main attention was
focused on the method of Gordon surface construction, and tothe study of relationship between
the design of data (input variables), selected set of localized functional units, and resulting
variance of model estimate and prediction.
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O DVOU FLEXIBILN ÍCH METODÁCH PRO DVOUROZMĚRNOU REGRESŃI

ANAL ÝZU

Pŕace je v̌enov́ana neparametrickému statisticḱemu modelov́ańı dvourozm̌erńych ploch na źa-
kladě pozorovańych dat, tj. dvourozm̌erńe regresńı anaĺyze. Model je konstruov́an jako kom-
binace jednoduch́ych b́azov́ych funkćı, jako jsou spliny, gaussiány apod. Nev́yhodou takov́eho
přı́stupu je poťreba odhadnout velké mnǒzstv́ı parametr̊u. Budou uḱaźany dva p̌rı́stupy, kteŕe
počet poťrebńych parametr̊u redukuj́ı. A to metoda zvańa projection pursuit, která je statis-
tikům dob̌re zńamá, a pak ḿeňe zńamá metoda konstrukce tzv. Gordonovy plochy. Zárověn
také uḱažeme, jak nep̌rı́tomnost dat v uřcité oblasti zvy̌suje variabilitu modelu a tedy i neurčitost
predikce. Metody budou předvedeny na um̌elých p̌rı́kladech.

ÜBER ZWEI FLEXIBLE METHODEN FÜR EINE ZWEIDIMENSIONALE

REGRESSANALYSE

Diese Arbeit befasst sich mit einer nichtparametrischen statistischen Modellierung zweidimen-
sionaler Fl̈achen auf Grundlage beobachteter Daten, d. h. mit der zweidimensionalen Regress-
analyse. Das Modell ist konstruiert als Kombination einfacher Basenfunktionen wie z. B. Spli-
nes, Gaussian’sche Funktionen u.ä. Als Nachteil eines solchen Ansatzes erweist sicht die
Notwendigkeit, eine große Menge Parameter zu schätzen. Es werden zwei Ansätze gezeigt,
welche die Anzahl der erforderlichen Parameter reduziert,und zwar projection pursuit, welche
den Statistikern wohl bekannt ist, und dann die weniger bekannte Konstruktionsmethode der
Gordon-Fl̈achen. Gleichzeitig zeigen wir, wie die Abwesenheit von Daten auf einem bes-
timmten Gebiet die Variabiliẗat des Modells und damit auch die Unbestimmtheit der Prädiktion
erḧoht. Die Methoden werden an künstlichen Beispielen vorgeführt.

O DWU ELASTYCZNYCH METODACH DO DWUWYMIAROWEJ ANALIZY

REGRESJI

Artykuł poświe֒cony jest nieparametrycznemu statystycznemu modelowaniu powierzchni dwu-
wymiarowych na podstawie obserwowanych danych, tj. dwuwymiarowej analizie regresji.
Model skonstruowano jako poła֒czenie prostych funkcji bazowych, takich jak splajny, gaussiany
itp. Wada֒ takiego podejścia jest koniecznósć oszacowania du̇zej liczby parametŕow. Pokazano
dwa podej́scia ograniczaj֒ace liczb֒e niezb֒ednych parametrów. To metoda nazywana projec-
tion pursuit, kt́ora jest dobrze znana statystykom oraz mniej znana metoda konstrukcji tzw.
powierzchni Gordona. Jednocześnie pokazano, jak brak danych w pewnym obszarze zwie֒ksza
zmiennósć modelu, czyli tak̇ze niepewnósć prognozowania. Metody zaprezentowano na sztucz-
nych przykładach.
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