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Abstract 

The pursuit of increased steam turbine power output leads to a design of low pressure stages 
with large diameters, featuring long and thin blades. The interaction of the structure with flow 
may induce vibrations, leading to a reduced operational life of the machine due to material 
fatigue. This work introduces a mathematical model of fluid-structure interaction, intended for 
the investigation of flow-induced turbine blade vibrations. At present, it is applied to a 
simplified test case of an isolated airfoil. The flow model is based on 2D Euler equations in 
Arbitrary Lagrangian-Eulerian formulation, discretized by the Finite Volume Method with a 
second-order accurate AUSM+-up scheme. The structure is modelled as a solid body with one 
rotational and one translational degree of freedom. The solution is realized iteratively by a 
time-marching method with a two-way fluid-structure coupling. In each iteration the airfoil 
surface pressure is integrated to determine the forces and the torsional moment driving its 
motion. The position of the airfoil in the next time step is obtained and the flow is resolved on 
a newly recreated mesh. The results of the present model are validated by comparison with 
experimental data and with numerical results of other models. 
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Introduction 

The phenomenon of aeroelasticity was first investigated in the field of aeronautics. Collar [1] 
states that the subjects of structure dynamics and aerodynamics cannot be treated separately 
and they have to be regarded as components of an integral analysis. He defines aeroelasticity 
as a discipline studying the combined effects of aerodynamic, elastic and inertial forces. Its 
role has since been recognized as crucial in a variety of other disciplines, such as civil 
engineering, biomedicine [2] and turbomachinery ([3], [4]). 

The most widely investigated dynamic aeroelastic effect in aeronautics is flutter (see e.g. the 
works [5], [6], [7]), which is also of interest in turbomachinery [8], together with forced 
response analysis [9]. Flutter is a self-excited vibration of structure, caused by the interaction 
of aerodynamic, elastic and inertial forces. The structure aerodynamic loading leads to a 
deformation of the body, which in turn increases the aerodynamic forces. The wing or blade 
thus vibrates with amplitude of oscillations increasing in each cycle, leading to a mechanical 
failure. While no loss of turbine blade due to flutter is known ([4]), it has been reported to 
cause cracking of the blade root [10]. 

The problem of flutter requires considering non-linear behaviour of both flow and elastic 
structure, change of domain and mesh in time, flow viscosity and turbulence effects [7]. 
Efforts have been made in the past to simplify the problem and to restrict the model to include 



 40 

only the most essential effects. The first attempts to solve the flutter problem analytically can 
be traced back to the works of Theodorsen [11], of interest is also the recent examination of 
the model by Perry [12], who introduced a model for aeroelastic flutter behaviour of an airfoil 
with aileron using simplifying assumptions such as potential flow and zero thickness of the 
wing. 

The advance of Computational Fluid Dynamics (CFD) and the rise in computational power 
allowed treating the aeroelasticity problems with numerical approaches. In order to keep the 
computational demands reasonable, flutter was first modelled by superimposing linear 
perturbations to a steady-state nonlinear solution and casting the equations to frequency 
domain. However, the assumption that the steady-state flow is identical with the time-mean 
flow may not always be valid and linear methods are incapable of capturing important non-
linear effects such as large amplitudes of blade motion or strong unsteady shocks ([13], [6]). 
The shortcomings of the harmonic time-linearized method are addressed by the non-linear 
harmonics (NLH) method introduced by Ning and He [14]. The time-mean equations are 
solved simultaneously with the harmonic perturbations and coupled via extra unsteady stress 
terms appearing due to the time-averaging. Ning and He demonstrate on a transonic 
compressor cascade that the NLH method captures successfully the nonlinear effects and 
achieves results close to a time-marching method. 

The inherent drawback of the NLH method is that the unsteadiness is resolved only in a 
limited number of harmonics whose frequency is not a part of the solution and it has to be 
given as an input at the start of the procedure. The full unsteady solution of fluid-structure 
interaction can be obtained by time-marching methods. Traditionally, the structural mechanics 
problems are modelled using Lagrangian description, while the fluid dynamics problems 
usually employ Eulerian description [15]. The moving fluid-domain boundaries in fluid-
structure interaction problems can be conveniently treated by a hybrid Arbitrary Lagrangian-
Eulerian (ALE) description, allowing a deformation of the physical domain independent of 
the fluid particle motion (see e.g. [15], [16], [17]). The stability and accuracy of the numerical 
methods in ALE formulation is closely related to the Geometric Conservation Laws (GCL) 
which require that a constant solution is reproduced exactly. An elaborate analysis of several 
time-advancing schemes in view of GCL is given in [17]. The deformation of the domain 
implies that the grid for the ALE formulation needs to be updated accordingly, posing a third 
problem additionally to the fluid and structure dynamics [15]. A brief summary of grid 
movement techniques is provided in [6], while a complete remeshing may be required for 
large domain deformations [18]. 

As the solution of the complete fluid-structure interaction is very complex, it is often 
simplified by imposing only a one-way coupling between the fluid and structure dynamics. 
The eigenmodes and eigenfrequencies are determined in advance by a structural solver and 
used to prescribe the structure motion for an unsteady fluid dynamics solver ([19], [20]). The 
unsteady aerodynamic load on the structure surface is extracted to compute the energy 
transferred from the fluid to the structure and by comparison with the structural damping to 
evaluate the susceptibility to flutter. The underlying assumption that the effect of aerodynamic 
forces on the change of the structural dynamics properties can be neglected requires that the 
fluid density is by several orders of magnitude lower than that of the solid. This makes the 
method suited for turbomachinery or aeronautics, while it is inapplicable e.g. for 
computational medicine where the fluid and solid densities are similar [2]. However, evidence 
suggests that this approach may fail even in cases with significant density difference [21] and 
a strong fluid-structure coupling should therefore be always included. 

The efforts to avoid modelling of the complete fluid-structure interaction root mainly from the 
incompatibility of the approaches traditionally used to treat isolated structure and fluid 
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dynamics problems. Typically, CFD has been solved with Finite Volume Methods (FVM) and 
computational structural mechanics (CSM) with Finite Element Methods (FEM), differing 
often in solution and discretization techniques [22]. This poses difficulty in transferring data 
across the fluid-structure domain interface, where the aerodynamic surface load imposes a 
boundary condition for structure dynamics and the displacement of the solid body deforms the 
fluid computational domain. A number of works has been published on solving the structure 
and fluid dynamics equations in a compatible fashion, some using the same discretization 
methods for both domains and the others a combination of different ones: Slone et al. [23] 
employed a single Finite Volume Unstructured Mesh discretization strategy for both fluid and 
structure, Sv tko [24] computed flow around a solid airfoil with two 
degrees of freedom using FVM- and FEM-based incompressible flow solvers respectively, 
Sanches and Coda [15] discretized flow equations with FEM and modelled the structure with 
FEM shell elements. 

In the present paper, we examine the onset of flutter for a NACA 0012 airfoil modelled as a 
solid body with two degrees of freedom, allowing a translational and a rotational movement. 
The flow around the airfoil is modelled using Euler equations in ALE formulation, discretized 
by the FVM. A time-marching iterative procedure is employed, solving simultaneously the 
unsteady flow and airfoil movement with strong coupling realized via the airfoil aerodynamic 
loads and displacement. As the final intended application of the model is to solve flutter in 
turbomachinery, the employed numerical scheme for approximation of inviscid fluxes needs 
to be capable of resolving compressible flows accurately and of capturing shock-waves 
sharply. A modern flux splitting scheme AUSM+-UP was employed, introduced originally by 
Liou and Steffen [25] as AUSM and modified for the low-speed flow regimes by Liou [26]. 

1 Mathematical Model 

This chapter describes the mathematical model of fluid flow around an oscillating airfoil. 
First, the Euler equations describing the inviscid compressible flow are introduced in ALE 
formulation, including the definition of boundary conditions. Then the motion of the airfoil as 
a solid body with one translational and one rotational degree of freedom is defined together 
with the coupling to the aerodynamic field. 

1.1 Flow Model 

We denote  the computational domain occupied by fluid at time .We aim to find 
the fluid density , velocity and static pressure p for , where u = [u1, u2]

T 
has two components u1, u2 in the directions of Cartesian axes x1, x2. Further we denote the 

total energy , using the notation e for internal energy. 

 
Fig. 1: Domain and boundaries (not in scale). 
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We consider the domain at time  as the reference domain  and introduce the 
ALE mapping [7]: 

  (1) 

describing the time-dependent position of a point from reference domain . 
The ALE velocity is defined as: . We consider the set of Euler equations [27]: 

 
 (2) 

where T is the surface outward unit normal. The vector of characteristic variables 
W, and the flux vector F are defined as: 

 

 (3) 

The system of equations is closed by the ideal gas law: 

 
 (4) 

We consider three types of boundary conditions: at the airfoil wall , at the domain inlet  
and outlet  (Fig. 1). The free-slip boundary condition is applied at the airfoil wall by 
imposing the normal component of flow velocity equal to the normal component of wall 
movement velocity (Eq. 5). Freestream conditions are prescribed at the domain inlet (Eq. 6) 
and constant solution in the direction of boundary normal is defined at the outlet (Eq. 7). 

  (5) 

 (6) 

 
(7) 

The initial condition for a steady-state computation is described by freestream conditions: 

  (8) 

The unsteady computations are performed by solving the steady-state case first and using the 
solution as initial condition. 
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Fig. 2: Airfoil parameters and position. 

1.2 Airfoil Motion 

The airfoil is modelled as a solid body with two degrees of freedom, allowing movement in a 
vertical direction and a rotation about elastic axis (EA). The equations describing the airfoil 
motion can be derived from Lagrange equations (see e.g. [7]). We consider the nonlinear 
form: 

  

 
(9) 

and the linearized form, valid for small vibration amplitudes of the angle  and its 
derivative : 

  

 
(10) 

where h is the airfoil vertical displacement (positive in upwards direction),  is the airfoil 
rotation angle (positive in counter-clockwise direction), m its mass,  the static moment 
about EA and the moment of inertia about EA (Fig. 2). The elastic support of the airfoil has 
stiffness  in vertical and  in rotational direction with the respective mechanical 
damping denoted as and . The aerodynamic load acting on the airfoil, i.e. the lifting 
force Fy (positive in upwards direction) and the torque M (positive in counter-clockwise 
direction), is calculated by integrating the airfoil pressure distribution obtained from the flow 
solver: 

 
 (11) 

2 Numerical Solution 

2.1 Grid 

The computational domain surrounding the NACA 0012 airfoil extends 9 chord lengths 
upstream, 4 chord lengths downstream and 10 chord lengths up and down vertically of the 
airfoil leading edge (LE). Two structured C-type grids with different level of refinement were 
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generated for the numerical solution. The fine grid features 516x49 cells, while the coarse one 
contains 256x24 cells (Fig. 3). The movement of the airfoil in unsteady computations requires 
that the mesh is updated accordingly. We consider two configurations: the reference 
configuration where the airfoil angle and displacement are equal to zero, and another 
configuration where the whole mesh is displaced and rotated as a rigid body with the airfoil. 

 
Fig. 3: Coarse (left) and fine grid (right). 

The instantaneous position of each grid point is a result of linear combination of these two 
configurations: 

 
 (12) 

where h is the displacement of the airfoil elastic axis and the rotation matrix  is defined 
using the airfoil rotation angle : 

 
 (13) 

The coefficient k is a linear function of the point distance from the nearest airfoil point , 
such that the grid points forming the airfoil boundary are fully displaced and the grid points 
further than a distance limit  stay at their reference configuration position: 

  (14) 

2.2 Spatial Discretization of Euler Equations 

The Finite Volume Method (FVM) is used for the discretization of Euler equations in ALE 
formulation. Let us divide the computational domain  into a set of N non-overlapping 
subsets (cells)  such that 

 

 (15) 
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The integral conservation law Eq. 2 has to be satisfied in each finite volume cell . We 
consider the integral boundary flux of the polygonial cell as a sum of fluxes through its walls, 
where  stands for the edge between the cell i and a neighbouring cell j and the average flux 

along the edge is denoted by : 

 
 (16) 

The numerical approximation  of the flux  was obtained by the AUSM-family scheme 
in the first (AUSM+, [28]) and second modification (AUSM+-up, [26]) by Liou. The idea of 
the AUSM schemes is to split the flux into the convective and pressure part and to treat them 
separately: 

  (17) 

where the 1/2 subscript indicates evaluation at cell interface. 

The definition of the convective and pressure terms for M-split AUSM+ scheme in ALE 
formulation can be found in [29]: 

 

 (18) 

where a is the speed of sound and the L/R subscript indicates that the expression is evaluated in 
either one or the other of the interface-adjacent cells, based on the upwinding principle. The 
notable differences of the ALE formulation in comparison to the Eulerian reference frame 
arise in the use of the relative Mach number instead of an absolute one 
and in the appearance of the new  term in the pressure part of flux. Formulas for the 
evaluation of the interface quantities ,  are introduced in [25]. 

The need for a universally applicable and robust numerical scheme lead to an extension of the 
AUSM scheme to low-speed flows with the introduction of the AUSM+-up modification in 
[26]. The newly constructed scheme is applicable to all speed regimes and removes the 
deficiency of the previous versions, which suffers from pressure oscillations along the grid 
direction with a very small velocity component, such as in the direction normal to the 
boundary layer. The formulation of the convective flux uses mass-flow splitting instead of 
Mach number splitting, here given already in the ALE formulation using the flow velocity 
relative to the interface to evaluate the mass-flow : 

 
 (19) 

The extra term  appears again in the pressure flux due to the ALE configuration. The 

coefficients of the scheme were set as in the example given by Liou to ,  
and . 

In order to increase the accuracy of the scheme, the quantities at the left and right side of the 
interface are obtained by using a linear reconstruction with TVD-based limiting of slopes 
[30]. In particular the min-mod limiter was employed in order to enhance the scheme stability. 
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2.3 Time Integration and GCL 

We substitute the numerical approximation of cell fluxes (Eq.16) into the set of Euler 
equations (Eq. 2) and by denoting the space-averaged state vector as  we obtain the 
following semidiscrete form: 

 
 (20) 

where R is the residual vector. 

We use the explicit Euler scheme and the second-order accurate 4-stage Runge-Kutta scheme 
(RK4) to integrate the system in time. While both schemes are a routinely used technique for 
numerical integration, a special attention has to be paid to meeting the GCL condition for 
ALE formulation. The Euler scheme is defined as: 

 
 (21) 

The GCL requires that the residual vector is evaluated on a mid-point grid in between the two 
time steps n and n + 1 [27]: 

 
 (22) 

To obtain the mid-point grid, we first need to determine the position of the grid in the next 
time-step, denoted as . We transform the set of the two second-order ordinary differential 
equations (ODEs) describing the airfoil motion (Eq. 9 or 10) into a set of four first order 
ODEs: 

  (23) 

We integrate the equation numerically in time and obtain a new airfoil position: 

  (24) 

Now we can employ the technique described in Section 3.1 to update the whole mesh with the 
new airfoil position. 

The RK4 scheme is expressed as: 

  

 

 

 

(25) 

with the coefficients set to ,  and . 

Again a mid-point grid is used to uphold the GCL, analogically to the Euler scheme: 

 
 (26) 
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The RK4 scheme for the temporal integration of the first order ODEs describing the airfoil 
motion (Eq. 23) is defined as 

  (27) 

 
Fig. 4: Distribution of non-dimensional pressure near airfoil LE from AUSM+ (left) and 

AUSM+-up scheme (right) for . 

3 Results and Discussion 

3.1 Steady-State Solution 

Steady state computations were performed to validate the numerical flow model by 
comparison with experimental data. The airfoil is fixed in position with h = 0 m and  
and the flow is iteratively computed by the time-marching method until it converges to a time-
constant solution. The airfoil chord length is c = 0:3 m and the inlet boundary conditions are 

defined by the free-stream flow quantities 

 

Figure 4 shows the distribution of static pressure near the airfoil leading edge, normalized by 
the free-stream static pressure . The solutions obtained by the AUSM+ and AUSM+-up 
schemes are compared. As noted by Liou [26], the original AUSM+ scheme suffers from 
oscillations appearing along the grid direction with small velocity component, which are here 
observed in the direction normal to the airfoil surface. The pressure oscillations influence 
directly the airfoil pressure distribution and lead to an inaccurate computation of the airfoil 
aerodynamic load, yielding the AUSM+ scheme unusable for the present model. The modified 
AUSM+-up performs satisfactorily, as it produces a smoother static pressure distribution 
virtually free of spurious oscillations. The rate of convergence is demonstrated in Fig. 5 by 
means of density residuals. While the AUSM+ scheme stops converging after 70 000 
iterations, the AUSM+-up scheme shows a steady convergence with residuals still diminishing 
after having dropped by 6 orders of magnitude. Note that the second order reconstruction is 
not employed in either of the cases, as it caused the AUSM+ scheme to diverge. All other 
computations performed in this paper employ the AUSM+-up scheme with reconstruction. 

The comparison of computations performed on two grids with different level of refinement is 
shown in Fig. 6. The isolines of pressure  are plotted, employing the definition 

 
 (28) 
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where the reference velocity . 

The discrepancy in the pressure field captured on the two grids with 256x24 and 516x49 cells 
is negligible, indicating that even the coarser grid is sufficiently refined. 

This conclusion is further supported by the airfoil surface static pressure and velocity 
distribution, presented as a function of airfoil chord in Fig. 7. The pressure coefficient in 
Fig. 7 (a) shows close agreement between the results on the two grids and the only notable 
discrepancy occurs in terms of the pressure minimum at 10%  which is by 2.4% more 
pronounced on the fine grid. 

 
Fig. 5: Comparison of density residuals for AUSM+ and AUSM+-up schemes for 

 

 
Fig. 6: Isolines of nondimensional pressure  on a coarse and fine grid 

Validation is provided by the experimental data of Benetka [31] which agree remarkably 
closely with CFD everywhere apart from the pressure minimum between 10% and 30% of 

. This underprediction of the pressure drop is not exclusive to the numerical model 
employed in this work and it is reported also in works of other authors using both inviscid 
[24] and viscous [7] flow solvers. A close match within 1.3% between numerical and 
experimental results [32] is found in terms of the non-dimensional squared velocity 

, plotted in the Fig. 7 (b). 
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(a) Pressure coefficient   (b) Non-dimensional velocity squared 

Fig. 7: Distribution of airfoil pressure coefficient cp and non-dimensional velocity squared 
Q2 on a coarse and fine grid, compared with experimental data of Luchta [32] and 
Benetka [31] 

3.2 Prescribed Oscillation of Airfoil 

This chapter presents the unsteady flow solution for a vibrating airfoil with prescribed 
harmonic oscillations around elastic axis. The vertical position of the elastic axis is fixed to 
h = 0 m and the rotation angle  is defined as 

  (29) 

with the pitching magnitude = 3 and frequency f = 30 Hz. 

The airfoil chord length is c = 0:1322 m and the position of elastic axis is = 0:25c (Fig. 2). 
The inlet boundary conditions are defined by the free-stream flow quantities  = 1:225 
kg/m3,  = [136; 0]T m/s, pFS = 101325 Pa. 

The unsteady evolution of pressure coefficient  is for each point on the airfoil surface 
approximated as 

  (30) 

where f is the prescribed frequency of airfoil vibration,  is the time-averaged value of 

, and the magnitude of oscillations  and the phase-shift  are obtained by the least-
squares method. 

The latter three quantities are plotted in Fig. 8 together with experimental results of Benetka 
[33] and Triebstein [34]. 

The time-averaged pressure coefficient shown in Fig. 8 (a) matches well with experimental 
data, although the minimum at 15%  is less pronounced. Similar discrepancy between 
numerical and experimental data was already discussed for the steady solution in Section 4.1. 
The magnitude of cp oscillations plotted in Fig. 8 (b) is scaled to the pitching magnitude of 1 
radian, i.e. multiplied by 180/ / . The numerical predictions capture the trend of  in 
agreement with the experimental results, although its magnitude is under predicted by up to 
50% in the first half of Cax. 
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(a) Mean value    (b) Magnitude 

 
(c) Phase shift 

Fig. 8: Mean value, magnitude and phase shift of cp during forced rotation. Comparison of 
CFD with experiments of Benetka [33] and Triebstein [34] 

Both experimental and numerical data show that the phase-shift of cp is negative near the 
airfoil leading edge and increases towards the airfoil trailing edge. However, while both sets 
measurements indicate that the phase-shift reaches positive values in the aft part of chord, the 
numerical prediction remains negative along the full chord length. The discrepancies can be 
explained by the lack of viscous flow modelling and by the difference in the size of the 
experimental test section and of the computational domain. While the experimental channel 
extends only 2.3 chord lengths up and down from the airfoil in vertical direction, the 
corresponding dimension of the computational domain is 10 chord lengths. 

3.3 Airfoil Motion with Two Degrees of Freedom 

The flow induced vibrations of an airfoil with two degrees of freedom are described in this 
chapter. We consider an airfoil section extruded by l = 0.05 m, with a weight m = 0.086622 
kg, a static moment to elastic axis  = -0.000779673 kg m, a moment of inertia to elastic 
axis = 0.000487291 kg m2, a chord length c = 0.3 m, a stiffness of support = 105.109 
N/m in vertical displacement and = 3.695582 Nm/rad in rotation and the respective 

damping = , = , with  = 10-3. The positions of the elastic axis and center of 
gravity are = 0.4c and  = 0.37c respectively, measured from the airfoil LE (Fig. 2). The 
remaining inlet conditions are defined by the free-stream quantities = 101325 Pa and 

= 1.225 kg/m3. The horizontal component of the freestream velocity  is varied, while 
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the vertical component = 0 m/s. The initial condition is obtained by running a 
computation with the airfoil in a fixed position until the solution converges to a steady-state. 

The airfoil motion is described either by the non-linear (Eq. 9) or by the linearized (Eq. 10) 
equations of motion. Figure 9 compares the solutions obtained using these two definitions of 
airfoil movement for a freestream velocity = 43 m/s and an initial airfoil displacement 
h0 = 0:05 m and pitching angle 
and pitching angle are plotted in Figs. 9 (a) and 9 (b) respectively. The linearization of the 
equations was performed under the assumption that the magnitude of the pitching angle  is 
small and the evolutions of both quantities show that the solution is consistent with the 
original non-linear equations for  
in either case, it is possible to use the non-linear equations without any computational penalty. 
The integration in time is performed using either the explicit Euler or the RK4 scheme (Eqs. 
24 and 27). The figures show only the results of the latter one, as the solution obtained by the 
Euler scheme matches so closely that it would not be discernible within the figure resolution. 
This results from the small time step of the order 10-7 s, necessary for the stability of the 
explicit temporal integration schemes. 

 
(a) Displacement   (b) Rotation angle 

Fig. 9: Vertical displacement and rotation angle of flow-induced airfoil vibrations with 
 = 43 m/s using linearized and non-linear equations of airfoil motion 

The dynamic behaviour of the system for different free-stream velocities ranging from 
 = 30 m/s to  = 45 m/s is plotted in Fig. 10 by means of the airfoil displacement h (a) 

and pitching angle  (b). The initial airfoil position is h0 = 0.05 and 
airfoil motion is described by the non-linear equations and the integration in time is 
performed by the RK4 method. The two cases with low freestream velocities, 30 and 35 m/s, 
exhibit a stable behaviour with both the airfoil vertical displacement h and the pitching angle 

 converging to zero values. An increase of freestream velocity to 40 m/s results into an 
unstable behavior with both parameters diverging, although the airfoil oscillations are damped 
and flutter does not occur. This is in agreement with the results from NASTRAN cited in 

= 37.7 m/s and flutter 
at = 42.4 m/s. According to this prediction, the last two plotted cases with freestream 
velocities of 43 and 45 m/s should be above the flutter boundary. The plots show that the 
damping of oscillations becomes substantially weaker with increasing freestream velocity, 
however, due to the presence of the torsional divergence it is not possible to safely conclude 
whether flutter actually occurs. 
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(a) Displacement   (b) Rotation angle 

Fig. 10: Vertical displacement and rotation angle of flow-induced airfoil vibrations for 
varying  

Conclusions 

This paper presents results of a fluid-structure interaction model applied to the solution of 
flow-induced vibrations of a NACA 0012 airfoil on elastic support with two degrees of 
freedom. The inviscid flow model is based on the Euler equations and solved numerically by 
the FVM in ALE formulation. The strong two-way coupling between structure and fluid is 
realized via the aerodynamic loads transmitted to the structure and via the fluid-domain 
deformation due to the airfoil movement. The model was successfully validated by 
experimental data on a steady-state solution and on a test-case with forced harmonic 
vibrations of the airfoil. The results showed that using the AUSM+ scheme for low-speed flow 
regimes leads to a presence of spurious pressure oscillations which are removed by the 
modified AUSM+-up scheme. The predictions of the fluid-structure interaction model were in 
agreement with the results of other authors, showing a stable behaviour of the system for low 
incoming flow velocities and a torsional divergence together with a weaker damping of 
oscillations for higher flow velocities. 
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Nomenclature 

a speed of sound 
ALE Arbitrary Lagrangian-Eulerian 

 damping in rotation 
 damping in vertical displacement 

c airfoil chord length 
 axial chord coordinate 

 pressure coefficient 
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CFD Computational Fluid Dynamics 
CG center of gravity 
CSM Computational Structural Mechanics 
d distance 
e internal energy 

 total energy 
EA elastic axis 
F flux vector 
f frequency of airfoil oscillations 

 lifting force 
FEM Finite Elements Method 
FVM Finite Volumes Method 
GCL Geometric Conservation Law 
h vertical displacement of airfoil 

 airfoil moment of inertia to EA 
 stiffness in rotation 
 stiffness in vertical displacement 

l airfoil depth 
LE airfoil leading edge 
m mass of airfoil 

 mass-flow 
M pitching moment 
n normal 
NLH Non-Linear Harmonics 
p static pressure 
Q non-dimensionalized velocity 
R vector of residuals 
s ALE velocity 

 airfoil static moment to EA 
t time 
u velocity 
W vector of characteristic variables 

Greek symbols 

 Poisson constant 
 computational domain 
 domain boundary 
 density 
 coordinate along airfoil chord from LE 

Sub- and Superscripts 

0 initial 
 evaluated on the interface 

FS free-stream 
I inlet 
L/R evaluated in one of the interface-adjacent cells 
mag magnitude 
mean time-averaged 
o outlet 
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r relative 
ref reference 
w wall 

 phase-shift 
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