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Abstract 
There is a global call to determine the state of the inventory of transport and storage 
containers for high radioactive waste (spent fuel assemblies). One possible solution is to 
perform vibration analyses and evaluate vibration responses by using artificial neural 
networks. For this approach, first investigations have been carried out. Vibration data are 
obtained from a testing setup modelling the nuclear storage fuel assemblies which is 
converted to the frequency domain via the Fourier transform. Raw spectral data are first 
prepared by normalization, data augmentation and limiting the frequency range. These 
measures are proven to have significant impact on the overall performance of the training of 
the neural networks. Using fully connected and convolutional neural networks, classification 
and regression is performed on the spectral data. Classification is shown to be possible with 
very high accuracy; and regression has decent results with options for improvement in later 
stages. Convolutional neural networks are shown to be superior in both cases. 
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Introduction 
The storage of nuclear waste is a complex and worldwide problem. Currently there are little to 
none long term solutions available for storing spent fuel assemblies, hence the waste is stored 
in intermediate transport and storage containers inside the nuclear power plants. These storage 
containers require active maintaining and monitoring to avoid dangerous and environmentally 
damaging situations. 

To research and develop novel solutions to these problems, a cooperative project was set up 
between Dresden Technical University (TUD) and Zittau/Görlitz University of Applied 
Sciences (HSZG). In light of this project different possible non-invasive measurement 
principles were proposed [1]. This paper focuses on the monitoring of containers using 
vibration analysis and training neural networks on the obtained spectral data to perform 
classification and assessment of the current state of the storage container inventory. 

1 Research Objectives 
The aim of the research is to develop novel machine learning solutions for the monitoring of 
nuclear waste containers. Specifically, by analyzing the vibrations and the resulting spectral 
decomposition of these signals. To achieve this, a number of neural networks were 
constructed and trained on the spectral data to predict the state of the waste containers. 
Additionally, a data augmentation workflow was built and evaluated to increase the 
effectiveness of the limited amount of data available. 
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2 Methods 

2.1 Data Acquisition 
To train a neural network, first a sufficient amount of data needs to be collected. To acquire 
the data necessary for further research, a testing setup was developed and measurements were 
performed. 

Scale models representing the actual fuel assemblies contained in the storage containers were 
constructed. The model is assembled as a collection of 16 tubes arranged in a four by four 
pattern. It is possible to change the amount of filament in these tubes. In this way, a number of 
different states were constructed; each with a different configuration. 

Two main rounds of experiments were performed: the first round with five different states 
ranging from full to empty. In Fig 1, the configured states for this round are shown. Later, the 
amount of states was increased to a total of 15. The results presented in section 3 use the data 
obtained from the last set of experiments. 

 
Source: Own 
Fig. 1: The prepared states for the first round of experiments 

To measure the vibrations on the fuel assembly models, a testing rig was set up where the 
model could be suspended in the air; this setup is presented in Fig 1. At three positions on the 
model sensors were attached to register the velocity of that position over time. The three 
sensors are positioned along the same axis where the impact is occurring. To perform the 
measurement, an impact hammer was used to hit the assembly. The resulting vibrations were 
then registered and normalized according to the vibrations measured on the hammer. This 
process was repeated ten times for each state. 

2.2 Data Preparation 
The raw data acquired from the sensors are not in a format that is useful for analysis and 
classification using neural networks. To capture the unique properties of each signal better, 
we decompose the time series in the frequency domain using the Fourier transform. This 
leaves us with the frequency values in between 0 Hz and 2000 Hz (Fig 2). 
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Source: Own 
Fig. 2: All obtained frequency domains for the second round of experiments 

2.2.1 Removing Noise 
When looking closer at the variance of the calculated amplitude of each frequency over 
measurements of the same state (Fig 3), it becomes clear that there are two zones in the 
spectrum with variance of different magnitude. The calculated amplitudes of the frequencies 
ranging from 0 Hz to 700 Hz are highly similar in over multiple measurements of the same 
state. The higher frequencies are exceptionally dissimilar over measurements of the same 
state. This increase in variance can be mainly attributed to noise caused both by measurement 
inaccuracies and outside factors. 

When training a neural network on samples which are very different but still map to the same 
output, we run into problems where the network has difficulties to converge to a state that can 
handle each case of input. Keeping in mind the construction of the spectral domain, we can 
assume that most of the original vibration data are defined by the values of the lower 
frequencies. To help the training performance of the used models, we limit the frequency 
range to the interval [0 Hz, 800 Hz]. 



 22 

 
Source: Own 
Fig. 3: Variance of the amplitude for each frequency over measurements of the same state 

2.2.2 Data Normalization 
Another technique used to improve training performance of the neural networks was to 
normalize the input data. This was achieved by subtracting the mean value of the spectrum to 
each value and dividing by the standard deviation afterwards to obtain a data sample with 
mean zero and standard deviation of one. 

2.2.3 Data Augmentation Techniques 
Since there were only ten measurements for each state, the amount of the data to train the 
neural networks on was very limited. To improve the performance and robustness of the 
network, data augmentation inspired by previous work in [2] were added. The techniques 
employed in this case were adding an offset to the original spectrum and multiplication of the 
spectrum. Offset was varied over ±0.1 times the standard deviation of the original sample and 
multiplication was varied over 1±0.1 times the standard deviation. For each sample, nine extra 
samples were constructed: three using the offset technique, three using multiplication and 
three using the combination. This effectively increased the size of our dataset with a factor of 
ten. It is important to note that the augmentation was executed after the normalization of the 
data, otherwise the normalization operation would have converted the extra samples back to 
the original sample. 

2.3 Used Models 
Training was performed on the two most used variants of feed-forward neural networks, the 
standard fully connected and convolutional neural networks. An architecture of comparable 
complexity for each one of the variants was constructed and trained on the prepared spectral 
data. See section 3.1 for the comparison of different models. 

The networks were constructed in the Keras [3] framework using the Tensorflow [4] backend. 
As for the optimizer, an instance of the Adam optimizer was used, configured with a learning 
rate of 0.0001. 
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2.3.1 Fully Connected Neural Network 
The fully connected network shown in Fig 4 consists of an input layer, two hidden layers and 
the output layer. The hidden layers have 256 neurons and are combined with the Exponential 
Linear Unit (ELU) activation function and a dropout measure dropping out 25% of the inputs. 

The depth of the neural network was kept small as increases in layers did not cause any major 
improvements in performance of the network. The ELU activation function has good training 
performance as it does not have the same problems with vanishing gradient compared to the 
sigmoid activation function. Dropout is added as a measure to make the resulting network 
more robust and prevent overfitting of the data. 

 
Source: Own 
Fig. 4: Fully connected neural network architecture 

2.3.2 Convolutional Neural Network 
The convolutional neural network shown in Fig 5 consists of an input layer, three 
convolutional layers, one hidden layer and the output layer. The three convolutional layers 
have 32, 64 and 128 kernels respectively. After each of the convolutional layers, a max 
pooling operation is performed with pool size of three. At the end of these layers the input 
space is reduced sufficiently to be fully connected to a single hidden layer with ELU 
activation and a dropout measure with a dropout rate of 25%. 

 
Source: Own 
Fig. 5: Convolutional neural network architecture 

2.4 Training Input 
In the case of the fully connected network, the input of the network is constructed by 
concatenating the spectra after data preparation of the three positions. Each amplitude value in 
the resulting array then serves as an input node to the neural network. 
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As far as the convolutional neural network is concerned, a different approach can be used. 
Since convolutional neural networks work on volumes rather than single input nodes, we can 
construct the input as a two dimensional array by stacking the spectra of each position. This 
resembles the way convolutional neural networks are used in the case of colour images where 
each image pixel has three components, one for each of the colour channels. 

To make sure the model was generalizing well, a validation split of 0.5 was chosen. This 
meant that only half of the samples were used in the training of the network. With the addition 
of data augmentation, the models still had sufficient data to be trained on. 

2.5 Output Encoding 
Two different types of encoding were used for the expected output for the networks, each of 
them more appropriate in different approaches of solving this problem. 

2.5.1 One-Hot Encoding 
To convert the state number to this encoding, an n-dimensional vector was constructed (n 
being the number of states: 5 or 15). In this vector, all elements are zero except for the 
element at the position of the state being encoded. 

This encoding was used to train the networks to perform a classification of the input sample. 
A property of this encoding is that we can interpret the output as a distribution of how 
confident the network is about its prediction: the more confident, the more the input will 
resemble the one-hot encoding. If multiple positions in the output are high, we can presume 
that the network recognizes properties from both states in the input. To get the output in the 
desired format, a softmax activation layer was added as the last layer of the models. With this 
output format, the categorical cross entropy between the expected output and the actual output 
was used as the loss measure while training. 

2.5.2 Continuous Value 
Another way to encode the state of a particular sample is to use a single value. In this case, the 
state number is converted to a number in the range [0, 1]. This is done by linearly 
interpolating the states number to the new range. 

This encoding was used when solving this problem as a regression one. As the states are 
numbered 1-15 going from empty to full, we can interpret the output as a value representing 
the amount of filling in the assembly. To limit the range of the output of the neural network 
model, a sigmoid activation layer was added as the last layer of the model. With this output 
format, the mean squared error between the expected output and the actual output was used as 
the loss measure while training. 

3 Results 

3.1 Comparison of Used Models 

3.1.1 Classification 
The evolution of the accuracy and loss function during training for each of the models is 
presented in Fig 6. It is clear that the convolutional model achieves the best performance in 
both categories. However, it is important to note that the training of the convolutional 
generally requires double the time per training iteration in comparison to the fully connected 
model. A possible explanation for this result is that the convolution kernels are able to extract 
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features from the input like slopes, peaks and valleys, while a fully connected model is less 
likely to detect these local dependencies between values. 

 
Source: Own 
Fig. 6: Accuracy and loss metric for the two models 

A visual representation of the accuracy of the predictions of both networks is given in Fig 7. 
As both networks have high accuracy, most points match with the expected values. It can be 
seen that the convolutional network only wrongly classifies one sample of the testing set, 
while the fully connected network has worse performance. 

 
Source: Own 
Fig. 7: Predictions of the different models for the samples in the test set 

Another interesting observation is that the wrong predictions are not close to the actual result. 
This could indicate that subsequent states do not show a straightforward evolution, meaning 
that states are highly unique and not closely related. This could prove to be a problem when 
deploying these models in real world environments as the states in that case would lie in 
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between the learned states and the drastic changes in spectral data might provoke erroneous 
predictions. 

3.1.2 Regression 
The performance of the test set for both models is presented in Fig 8 and Fig 9. Graph in 
Fig. 8 shows the scatter plot mapping the expected value to the predicted value. Graph in 
Fig 9 draws the boxplot of the predicted values for each one of the states. 

In the case of regression, there is almost no performance difference between the fully 
connected and the convolutional neural network. Both networks achieve similar results in 
terms of mean squared error. The results currently obtained do not seem useful in practical 
application. However, an estimation from a regression network could be used in conjunction 
with other metrics to provide a more accurate assessment of the state of the container. 

 
Source: Own 
Fig. 8: Regression performance of the test set for the fully connected neural network 
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Source: Own 
Fig. 9: Regression performance of the test set for the convolutional neural network 

3.2 Effects of Data Preparation 
The accuracy of the fully connected model is shown in Fig 10 with different configurations of 
data preparation; the results for the convolutional model are similar. Four different 
configurations were tested, each one with the addition of one extra data preparation step. 
Starting off without any data preparation, the accuracy of the network is equivalent as 
randomly guessing the state. With the addition of each of the data preparation measures the 
accuracy improves accordingly. It can be concluded that each of the data preparation 
measures explained in section 2.2 have a significant improvement on the performance of 
a particular model. 
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Source: Own 
Fig. 10: Performance benefits gained by using data preparation 

4 Future Work 
As the classification spectral data is shown to have very high accuracy, there can be further 
experimentation with other fuel assembly states. For example, the network can be adapted to 
classify the exact tube where there is an anomaly by changing the testing setup to have 
sensors on each axis and to prepare the necessary states. 

Further research into the generalization ability of the obtained networks is needed; they need 
to work in a real world environment where the container state will not exactly be one of the 
learned states. 

Additional work is needed in the case of regression as it shows promise to be able to 
overcome the limitations with generalization. To accomplish this, the accuracy of the 
predicted values needs to be refined, possibly by tuning the network parameters or by 
constructing hybrid models of different regression solutions. 

Conclusion 
The trained neural networks achieve very high accuracy when classifying spectral data and do 
not show signs of overfitting. 

When using the models to perform regression, the results are less promising. While it is 
possible to predict a value that is rather close to the expected result, the presence of numerous 
outliers is worrying. When fine tuning some of the parameters and combining the network 
with other analysis methods, it is possible that an estimate with sufficient accuracy can be 
achieved. 

Convolutional neural networks are best suited for the analysis of spectral data as they can be 
built to greater complexity and can recognize local patterns in the data, which certainly is an 
advantage when considering spectral data. Even though time complexity is greater for the 
convolutional architectures, the time needed for training is still within reasonable bounds. 

When applying different data preparation procedures, the performance of all networks 
increases accordingly. With the addition of each of the procedures, the overall accuracy of the 
networks sees a significant improvement. 
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VÝZKUM A VÝVOJ UMĚLÉ NEURONOVÉ SÍTĚ PRO SPEKTRÁLNÍ DATA 
Globální výzva k určení stavu obsahu přepravních a skladovacích kontejnerů pro vysoce 
radioaktivní odpady (sestavy vyhořelého paliva) nabízí jako jedno z možných řešení 
provedení vibračních analýz a vyhodnocení vibračních odezev pomocí umělých neuronových 
sítí. U tohoto přístupu byla provedena první šetření. Data o vibracích jsou získána 
z testovacího nastavení, které modeluje sestavy palivového jaderného úložiště a je převedeno 
na frekvenční doménu pomocí Fourierovy transformace. Surová spektrální data jsou nejprve 
připravena normalizací rozšířením dat a omezením frekvenčního rozsahu. Tato opatření mají 
evidentně významný dopad na celkový výkon neuronových sítí. Za použití plně propojených 
a konvolučních neuronových sítí se na spektrálních datech provádí klasifikace a regrese. 
Ukázalo se, že klasifikace je možná s velmi vysokou přesností a regrese má velmi dobré 
výsledky s možnostmi zlepšení v pozdějších fázích. Konvoluční neuronové sítě se v obou 
případech jeví jako vynikající. 

UNTERSUCHUNG UND ENTWICKLUNG EINES KÜNSTLICHEN NEURALEN NETZES FÜR 
SPEKTRALE DATEN 

Die globale Herausforderung zur Bestimmung des Inhaltes von Transport- und 
Lagerungscontainern für hoch radioaktive Abfälle (Zusammenstellung von ausgebranntem 
Brennstoff) bietet als eine der möglichen Lösungen die Durchführung von Vibrationsanalysen 
und der Auswertung von Vibrationsrückmeldungen mit Hilfe künstlicher Neuronennetze. Bei 
diesem Ansatz wurden erste Untersuchungen durchgeführt. Die Daten über die Vibrationen 
wurden aus der Testeinstellung gewonnen, welche die Zusammenstellungen der 
Kernbrennstofflagerstätte modelliert und an einer Frequenzdomäne mit Hilfe der Fourier-
Transformation durchgeführt wird. Die spektralen Rohdaten werden zunächst durch 
Normalisierung durch Erweiterung der Daten und durch Begrenzung des Frequenzbereichs 
vorbereitet. Diese Maßnahmen haben eine evident bedeutsame Auswirkung auf die 
Gesamtleistung der Neuronennetze. Bei der Verwendung voll verbundener und 
konvolutartiger Neuronennetze werden an den Spektraldaten eine Klassifikation und eine 
Regression durchgeführt. Es hat sich gezeigt, dass eine Klassifikation mit sehr hoher 
Genauigkeit möglich ist und die Regression sehr gute Ergebnisse mit Möglichkeiten der 
Verbesserung in späteren Phasen aufweist. Die konvolutartigen Neuronennetze erweisen sich 
in beiden Fällen als hervorragend. 

BADANIA I ROZWÓJ SZTUCZNEJ SIECI NEURONOWEJ DLA DANYCH WIDMOWYCH 
Wystosowano globalny apel do określenia stanu zapasu kontenerów transportowych 
i magazynowych na odpady wysoce radioaktywne (zestawy wypalonego paliwa). Jednym 
z możliwych rozwiązań jest wykonanie analiz wibracyjnych oraz ocena działania drgań przy 
pomocy sztucznych sieci neuronowych. Dla takiego podejścia wykonano pierwsze badania. 
Dane dotyczące drgań pozyskiwano z ustawienia testowego, które modeluje zestawy 
składowisk paliwa jądrowego i jest przetworzone na domenę częstotliwości przy pomocy 
transformacji Fouriera. Surowe dane widmowe są najpierw przygotowane w drodze 
normalizacji, powiększania zbiorów danych i ograniczenia zakresu drgań. Działania te mają 
jednoznacznie znaczący wpływ na ogólną wydajność sieci neuronowych. Przy wykorzystaniu 
w pełni połączonych i splotowych sieci neuronowych na podstawie danych widmowych 
dokonuje się klasyfikacji i regresji. Okazało się, że klasyfikacja możliwa jest z bardzo dużą 
dokładnością a regresja osiąga bardzo dobre wyniki z możliwością udoskonalenia na 
późniejszych etapach. Splotowe sieci neuronowe wydają się w obu przypadkach znakomite. 


