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Abstract 

One of the main goals of entities in the securities market is to buy stocks cheaply at the right 
time (buy undervalued stocks) and also to sell stocks expensively at the right time (sell 
overvalued stocks). 

It is typical for undervalued stocks to be traded at a low price at some point due to their 
fundamental characteristics. In the future, undervalued stocks can be expected to rise in price, 
which can bring a capital gain to an investor who bought at a low price. Undervalued stocks 
are therefore recommended for purchase. 

An important prerequisite is therefore the accurate timing of buy and sell signals. The 
problem, however, is that no one knows exactly when the right time will come, because the 
market price of stocks is affected by many factors that have an impact on fluctuations in the 
market value of stocks. For this reason, volatility modeling is coming to the forefront of the 
interests of many financial analysts and investors. 
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Introduction 

The so-called Mathematical modeling provides methods by which phenomena and activities 
that take place in a person s daily life can be studied. Thus, mathematical modeling makes it 
very easy to display complex questions or problems through mathematical equations or 
functions. One of the areas where mathematical models can be used very well is the area of 
finance, in which the financial market has a key position. Based on supply and demand, there 
is a movement of money and capital between different entities. The main platform for these 
financial transactions is stock exchanges, where the main attractions include stocks of large 
companies. 

However, the problem with these transactions is a high degree of uncertainty, as stock 
volatility is largely unpredictable. Reasons include, for example, measures or regulations of 
governments in a given country, market expectations, financial or other crises, or the political 
situation in a given country. For this reason, prediction or modeling of stock volatility comes 
to the forefront of the interests of many investors, economists, speculators or financial 
analysts. 

1 Research Subject 

Th
time interval using the application of methods and analyzes. This behavioral analysis will be 
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performed based on the residue distribution calculated from the GARCH model, which will 
be estimated from the data. The work will analyze both the expected changes that follow the 
normal distribution, but mainly unexpected changes  the so-called heavy tails. 

tocks in the period from 
January 2018 to February 2019. For the analysis itself, the statistical software R was used as a 
tool. 

2 Research Process 

First of all, the source data must be treated so that there is no non-stationarity and 
inhomogeneity in the data. The so-called autocorrelation also occurs as an undesirable 
phenomenon in the case of time series. Failure to respect the autocorrelation of residues 
results in skewed estimates of unknown parameters, which also affects other characteristics. 
If autocorrelation occurs in the time series, then the residues are not independent. The time 
series therefore need to be cleaned so that the resulting p-values are not skewed. Therefore, 
time series will be logarithmized first, which will remove their multiplicative character 
(multiplicative changes of time series will be converted to additive changes). Then the method 
of the so-called 1st order difference (differentiation of source data) will be applied, which will 
remove the non-stationarity of this data. To verify that the given values are independent, the 
so-called autocorrelation function (independence verification) and partial autocorrelation 
function (independence verification when removing the influence of the third quantity) will be 
used. The autocorrelation function (ACF) is a suitable imaging tool for detecting visible 
patterns in data. The ACF value then indicates at different time intervals (Lag) whether there 
is any form of automatic correlation in the data. 

Next, the GARCH model (with parameters p, q) will be used, which is a model for examining 
time series volatility. Using the GARCH model, heteroskedasticity will be removed from the 
data. At this point, the already adjusted data show the characteristics of white noise, which 
means that all influences are removed  so we obtain independent, equally distributed (same 
variance) of the random variable. In addition to the above assumptions (homogeneous, 
stationary series and non-correlation of logarithmic returns), the third assumption of volatility 
models, which is the normality of logarithmic returns, must be observed. Histogram display 
can be used to verify the normality of residues. 

3 Literary Research and Formulas 

3.1 Time Series Issues 

The time series represents the so-called numerical variable, the values of which are largely 
dependent on the time in which these values were obtained. It is basically a sequence 
of chronologically arranged observations. The time points at which the data were obtained are 
usually equally distant from each other [5]. 

Description through descriptive statistics can provide a sufficient idea of the properties of 
time series as a single data unit but does not provide information about its time evolution [5]. 

Time series can be classified on the basis of various aspects [5]: 

 according to the nature of the data, the values of which form a time series, 
 interval time series - the data depends on the length of the interval that is monitored, 
 instantaneous time series - data refer to a specific moment, 
 according to the periodicity with which the data are monitored, 
 time series of annual data, 
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short-term time series,
 by type of data monitored, 
 time series of absolute indicators, 
 time series of derived characteristics  e.g. cumulative time series. 

Time series are the result of observations made at discrete time points. Some of them are then 
discreet in their nature (as an example, time series of total production of a certain agricultural 
crop for individual years), others need to be discretized  first. Thus, time series can be 
created by discretization of values of a continuously changing quantity (e.g. a series of values 
of amplitude of a signal at given time points), accumulation of values of monitored quantity 
for a given time period (daily precipitation totals in meteorology) or by averaging values of 
considered quantity in given time interval (average daily temperatures) [4]. 

If there is a choice, then it is recommended to choose a compromise solution. The high 
density of observation time points allows the characteristics of the time series to be well 
captured, but calculation difficulties can occur. The choice of equidistant intervals between 
adjacent observations should be a matter of course. As part of the analysis of economic time 
series, problems associated with the calendar may occur (different lengths of calendar months, 
different number of working days per month, moving holidays). In such cases, a so-called 
standard month  of 30 days or a standard number of working days per month is usually 

introduced, or the observed data are accumulated. The length of a time series is defined as the 
total number of observations in the time series, not as the time span between the first and last 
observations [4]. 

3.2 Time Series Autocorrelation 

A key assumption underlying the linear regression model (LRM) commonly used in applied 
econometric studies is a sufficient limitation of a phenomenon called autocorrelation [6]. 

An important feature of time series is their (potential) serial correlation. Therefore, a thorough 
analysis and visualization of these correlations is needed. The autocorrelation between two 
random variables X_t and X_ (t + k) can be described as follows [2]: 

  (1) 

Since moments are required for stationary data to be constant over time, autocorrelation can 
be written for these values as a function of delay [2]: 

  (2) 

The most common autocorrelation test in the regression model is the borderline Durbin - 
Watson test, which is used to test the independence of residues in the normal regression 
model. The test finds application when the data are obtained sequentially, and the values of 
the dependent variable form a time series [3]. 

Durbin - Watson test is calculated as [2]: 

  (3) 
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3.3 Model AR-1 

The autoregressive model of a time series is based on the assumption that any value in a time 
series depends on the previous value of that series. The autoregressive model AR (p) of order 
p can be defined as follows [1]: 

  (4) 

Where 
 are the coefficients within the autoregressive process, 

 is the so-called white noise (current value), and 
 is the new series value calculated based on the previous values. 

3.4 MA Moving Sum Model 

The process MA (q)  (Moving Average) - of order q can be written as follows [1]: 

  (5) 

Where 
 are the parameters of the model, 
 is white noise. 

3.5 ARMA Model 

By combining the already mentioned processes AR (p) and MA (q), a mixed process in the 
form of ARMA (p, q) can be obtained [1]. 

The condition of stationarity of the ARMA process coincides with the condition of 
stationarity of the AR process (p) and the condition of process invertibility is the same as the 
condition of process invertibility MA (q). The mean value of the ARMA process is also zero 
(as in the previous AR and MA processes) and its autocorrelation function satisfies a similar 
system of difference equations as in the AR process. Several alternative options can be 
selected for writing the ARMA process in the form of a difference equation, a linear process 
or in an invertible form. For each AR model of order p, an equivalent MA model with a 
sufficient number q of the interference element can be found. Economic or business time 
series can be modeled using a relatively small number of p and q elements within the AR, MA 
or ARMA model. The aim is to find or determine the smallest number of p and q elements 
needed for satisfactory time series prediction [1]. 

4 Practical Research 

the length of 285 observations. This is the daily development of stocks with the exception of 
weekends and holidays from January 2018 to February 2019. The development of stocks in 
this period is shown in Figure 1. 
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Source: Own 
Fig. 1:  

At first glance, it is clear, that the series is inhomogeneous and non-stationary. For 
verification, the so-called autocorrelation function is used by default, which can be seen in 
Figure 2, and the partial autocorrelation function shown in Figure 3. But first, the time series 
must be inserted into the software R and commands for autocorrelation (verification of 
stationarity) and partial autocorrelation function (verification of the influence of the third 
quantity) must be used. 

 
Source: Own 
Fig. 2: stocks 
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The autocorrelation function (ACF) is a suitable imaging tool for detecting visible patterns in 
data. The ACF value at different time intervals (Lag) indicates whether there is any form of 
automatic correlation in the data. In Figure 2 you can see clearly visible patterns between the 
data. In other words, a clear violation of the presumption of independence can be noticed. 

 
Source: Own 
Fig. 3:  

The autocorrelation function gradually decreases and the first PACF value is close to 1, which 
indicates that the series is not stationary. 

In order to apply the models, a number of KB stocks need to be transformed. Thus, it will be 
necessary to logarithm the data, which will remove their inhomogeneity, and subsequently it 
will be necessary to make a difference, which will remove their non-stationarity. 

After using commands for logarithm the data and making a difference, it is now possible to 
identify the model by estimating the autocorrelation and partial autocorrelation functions, 
which are shown in Figures 4 and 5. It can be deduced that this is indeed a stationary series, 
because ACF values no longer gradually decrease but move in a certain interval. 

5 10 15 20

Lag
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Source: Own 
Fig. 4:  stocks 

The dashed line in the correlogram determines the truncation points (confidence interval). 
Values between zero and this limit are considered insignificant, i.e. zero. Thus, it is clear, that 
the series does not contain any MA process because the ACF values are zero. 
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Source: Own 
Fig. 5:  

The partial autocorrelation function helps determine the order of the AR process. However, 
the monitored series also does not include this process, because all PACF values are 
insignificant. Correlations could not be demonstrated in this time series, so the whole series is 
considered white noise. The GARCH model will therefore be used for modeling. 

4.1  

Now the volatility model will be applied to the same time series of KB stocks. The GARCH 
model (p, q) will be used. However, before the GARCH model is applied, the basic 
assumptions for modeling the volatility of a given series must be verified. A significance level 
of 0.05 is considered for all tests below. 

The given time series must again be transformed into a stationary series by means of 
logarithmization and subsequently difference. Figures 4 and 5 are proof of the stationary 
series. Furthermore, the non-correlation of logarithmic returns is determined, for example 
using the ACF and PACF functions. As already shown above, the given time series does not 
contain a correlation of random variables. 

The third basic assumption of volatility models is the normality of logarithmic returns. The 
Jarque-Ber test can be used to verify normality. For JB test, the null hypothesis is followed, 
for which the normality of the distribution of logarithmic returns is assumed, as well as the 

5 10 15 20

Lag
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alternative hypothesis, which states that logarithmic returns do not have a normal distribution. 
The p-value is very low (2.2e-16 in Figure 7), which is less than the significance level of 0.05, 
so the normality of logarithmic returns must be rejected. 

A histogram was also used as confirmation. The fact that the logarithmic yields do not have a 
normal distribution is shown in Figure 6, which shows a histogram of the actual distribution 
of the logarithms of the series yields. Logarithmic returns have a sharper distribution, which is 
typical for financial series. 

 
Source: Own 
Fig. 6: Histogram 

Although the Jarque-Ber test did not show the existence of a normal distribution in the data, 
this time series can be used in the volatility model. The GARCH (1, 1) model will be applied 
to the time series, which is the most used model for examining time series volatility. The 
results from the R studio are shown below in Figure 7. 

Histogram of akcie4

akcie4
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Source: Own 
Fig. 7: GARCH function (1,1) 

A more important parameter in the model is the parameter b1, so the resulting model GARCH 
(1, 1) has the form: 

  (6) 

However, the Pr value is greater than the significance level of 0.05. For this reason, it is white 

under review are not affected by the impact of new information but are also not affected by 
past variance values. However, if this were not the case, based on the parameters of this 
function, it can be stated that the impact of new information ( ) is not as important within 
this time series as past values of variance ( ) and the modeling of market values 
of stocks should be based on past values, as this is the most significant factor influencing this 
time series. 

The GARCH (0, 1) model can also be applied to the time series, which is also a frequently 
used model in the study of time series volatility. The results from the R studio are shown in 
Figure 8. 
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Source: Own 
Fig. 8: GARCH function (0,1) 

A more important parameter in the model is the parameter a1, the resulting model GARCH 
(0,1) has the form: 

  (7) 

The value of the indicator Pr is less than the significance level 0.05 only in the case of 
parameter a0. Therefore, it can be stated again that the impact of the new information is not 

stocks in the monitored period are not affected by the new information. 

Conclusion 

The aim of the article was to apply the ARMA and GARCH model to the time series of 

these stocks. The most commonly used form of autocorrelation is the first-order AR (1) 
autoregression, which was also used. 

Based on the GARCH (1, 1) and GARCH (0, 1) models, it was found that the examined time 
The market 

impact of new information but are also not affected by past variance values. 
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The issue of time series of stocks is a very specific topic, because what may apply in one 
market may not apply in another market, or even what applies to the market values of stocks 
of one company may not show the same results for another company. 

The resulting values are also affected by the observed period, when in a certain period the 
results may be completely different from other periods. If the time series of market values of 

new information is not as important within the examined time series as past values of variance 
and stock value modeling should be based on past values, as it is the most important factor 
influencing the market value of stocks. 
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ANWENDUNG VON ARMA UND GARCH MODELLEN AUF DIE ZEITREIHE DER 

AKTIEN VON K BANKA 

Eines der Hauptziele von Unternehmen auf dem Wertpapiermarkt ist es, Aktien zum richtigen 
Zeitpunkt billig zu kaufen (unterbewertete Aktien zu kaufen) und Aktien zum richtigen 

 
Es ist typisch, dass unterbewertete Aktien aufgrund ihrer fundamentalen Eigenschaften 
irgendwann zu einem niedrigen Preis gehandelt werden. In Zukunft ist mit einem Preisanstieg 
bei unterbewerteten Aktien zu rechnen, was einem Anleger, der zu einem niedrigen Preis 
gekauft hat, einen Kapitalgewinn bringen kann. Unterbewertete Aktien werden daher zum 
Kauf empfohlen. 
Eine wichtige Voraussetzung ist daher das genaue Timing der Kauf- und Verkaufssignale. 

Marktpreis von Aktien von vielen Faktoren beeinflusst wird, die sich auf Schwankungen des 

Vordergrund der Interessen vieler Finanzanalysten und Investoren. 

ZASTOSOWANIE MODELI ARMA I GARCH NA SZEREGU CZASOWYM AKCJI BANKU 

K BANKA 
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