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Abstract 

The use of mobile platforms can help employees automate manual processes and streamline 
operations to save time and perform their tasks safely and accurately. A power-assisted 
vehicle to move weight around the place  solution: inexpensive, easy to apply, reliable, safe. 
It can adj gait, loads up to 500 kg. It is a relatively inexpensive, 
easy-to-apply, reliable, and safe solution for moving weight. The motivation of the study is to 
increase efficiency and reduce physical strain on the operator in material handling tasks and to 
promote the implementation of this smart platform. Artificial intelligence learning methods 
are applied to adapt to individual operator s experience, resulting in a personalized and more 
comfortable interaction with the help of Q-learning algorithm with 256 learning outcomes in 
adjusting controller settings: damping, mass, stiffness. 

Keywords 

Q-learning algorithms; Smart platform; AI; HRI; Material handling tasks; Human comfort 
criteria. 

Introduction 

With the pandemic warehouses growth in number and size [15, 16, 21], the use of mobile 
platforms can help employees automate manual processes and streamline operations to save 
time and perform their tasks safely and accurately. There are many types of wheeled devices 

various industries and warehouses, while hospitals use bed movers and wheelchairs to 
transport patients. Supermarket trolleys make shopping easier, and baby strollers allow us to 
take our children on long walks. Multiple earlier studies [1, 5, 6] demonstrated that the use of 
manual vehicles can increase human efficiency and reduce stress in manual handling tasks. 
Many groups of people, including professional workers, parents, disabled individuals, and 
customers, use some form of mobile vehicle to solve a material handling task at some point in 
their lives. 

Material handling can expose workers to risk factors for low-back disorders, such as lifting, 
bending, twisting, pulling, pushing, and maintaining static postures. Pushing and pulling 
activities make up almost half of all manual materials handling [10]. This study focuses 
specifically on carrying activities using industrial power-assisted carts, which are typically 
manipulated by pulling backwards and pushing forwards with two hands. Pushing is generally 
preferred to pulling because it is sa s feet may be run over by 
the cart, especially if it is powered, and the arm is stretched behind the body in an awkward 
position that increases the risk of injury. Pulling while walking backwards is also dangerous 
because the operator cannot see the path of travel. Research has shown that people can usually 
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exert higher push forces than pull forces [13]. While pulling may be necessary in some 
situations, it should be avoided whenever possible and minimized when necessary. 

1 Research Objectives 

The goal of the current research is to address the issue of discomfort experienced during 
interactions between humans and industrial carts. The study is focused on situations where an 
operator uses a cart to navigate through a space that may contain obstacles and targets (such 
as a supermarket, warehouse, hospital, or transportation hub). The operator may choose 
targets and paths that are not always optimal, and their physical and mental state, along with 
the weight of the load, may change over time. It is aimed to identify criteria that reflect the 

s comfort and satisfaction, and use this information to adjust a support system to 
improve comfort. To do this, a chain of experiments is designed and conducted involving 
linear and curvilinear cart movement, using impedance controllers to control both linear and 
rotational motion in the latter case. The effects of various controller settings on operator 
comfort are examined and a system that allows adjusting these settings automatically using an 
optimization method is developed. 

The article is organized as follows. The next section reviews the existing literature on the 
topic, highlighting relevant studies and theories that provide a foundation for the current 
research. The research design, Q-learning algorithm and human comfort criteria that were 
used in the study are discussed in methods. The following section presents the findings of the 
study. The results and their possible practical implications as well as limitations encountered 
in the current study are listed and explored in the discussion and limitations section. The 
article concludes with the summary of the work and suggests future directions for research in 
the field. 

2 Theoretical Background 

Mechanical impedance control is a control method that involves the manipulation of the 
mechanical impedance of a system to achieve precise and robust control of its motion. The 
concept of mechanical impedance control was first introduced by Hogan from the 
Massachusetts Institute of Technology (MIT) [7, 8]. Mechanical impedance control has had a 
significant impact on the field of robotics and control engineering. It provides a flexible and 
robust approach to controlling the motion of robotic systems and other mechanical systems 
that interact with the environment. By modulating the mechanical impedance of the system, it 
is possible to achieve a desired motion or interaction with the environment, while also 
allowing the system to adapt to changes in the load or the environment. Mechanical 
impedance control has been widely applied in the control of robots and manipulators (see, e.g. 
[14]), as well as in the development of assistive devices, such as exoskeletons and powered 
prostheses [3]). It was also used in the development of haptic interfaces, which provide touch 
feedback in virtual environments, and in the control of rehabilitation devices, such as robotic 
arm and leg trainers. 

There are a few examples of a power-assisted control system based on a compliance 
controller for exoskeletons, mobile platforms and wheelchairs. The first one was developed at 
the Rehabilitation Institute of Chicago [2]. The second powered exoskeleton was developed 
by researchers at the National Institute of Advanced Industrial Science and Technology 
(AIST) in Japan [20]. These exoskeletons are designed to assist people with lower limb 
paralysis to walk by providing powered assistance to their legs. The exoskeletons use a 
compliance controller to adjust the impedance of the powered joints in response to the user s 
movements and the environment. It allows the exoskeleton to adapt to changes in the user's 
motion and the terrain, providing a more natural and comfortable walking experience. 
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Two examples of a power-assisted control system based on a compliance controller for 
wheelchairs include the HapticMaster developed by researchers at the Netherlands [22] and 
the Kinetisense developed by researchers at the University of California [18]. Both represent a 
powered wheelchair that uses a compliance controller to adjust the impedance of the wheels 
in response to the user's movements and the environment. The compliance controller allows 
the wheelchairs to adapt to changes in the user s motion and the terrain, providing a more 
natural and comfortable ride for the operator. An examples of a power-assisted control system 
used for mobile platforms and trolleys could be AGV (Automated Guided Vehicle) developed 
by researchers at the University of Hong Kong [12]. The compliance controller adjusts the 

s motion in response to the load and the environment, enabling it 
to navigate around obstacles and maintain a stable and comfortable ride for the operator. 
These types of power-assisted control systems are described in Table 1. All of these projects 
have the potential to greatly improve the mobility and independence of people with mobility 
impairments, particularly in challenging environments such as rough terrain or steep slopes 
and the efficiency and safety of logistics operations. 

Tab. 1: Comparison of the types of power-assisted control systems 
Project name Year  Research team members Main concept 
Kinetisense 2013 Hargrove, Peshkin Powered wheelchair with 

compliance controller for wheels 
HapticMaster 2011 Henze, Wahl, Buss, Kohl, 

 
Powered wheelchair with 
compliance controller for wheels 

Powered exoskeleton 2010 Aoyama, Iwamoto, 
Nakano 

Powered exoskeleton with 
compliance controller for legs 

AGV 2004 Wong, Liu, Leung Mobile platform with 
compliance controller for 
logistics operations 

Impedance-
controlled 
exoskeleton 

2004  Reinkensmeyer, Herr Powered exoskeleton with 
compliance controller for legs 

Source: Own 

Manipulation with the object of interest requires a physical interaction. In order to fulfil the 
task requirements, the user chooses desired impedance that can be expressed by equation (1): 

 , (1) 

where , and  are positive constants that represent the desired inertia, damping and 
stiffness, respectively. 

From the equation (1) we can find the acceleration reference (2): 

  (2) 

For admittance control, the control force is a position-controller designed to track the 
trajectory . Trajectory tracking is implemented using a PD controller with positive 
gains  and  (3): 

  (3) 

The simplified impedance controller could be written in the form (4): 
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 , (4) 

where  is mass,  refers to damping, and external force is . 

The values of and depend on the physical properties of the system, and the desired 
values and  can be used to specify the desired behavior of the system. Some researchers 
[4] found that the spring component of an impedance controller does not significantly affect 
the interaction process. 

3 Methods 

In robotics, the control of human-industrial cart interaction can be performed using a variety 
of techniques, depending on the specific application and requirements. In this set of 
experiments, Human-Robot collaboration approach was used. The platform could interact 
with the human, for example, by guiding the load to the desired location, assist the human 
with turns and stops as well as adjust to his driving technique using adaptive control. 

In its turn, adaptive control in human-robot collaboration refers to the ability of a robot to 
adjust its behavior in response to changes in the human operator's behavior, skill level, or 
preferences. This allows the robot to adapt s abilities and work style, leading to 
a more efficient and natural collaboration. Adaptive control in human-robot collaboration is 
currently a multidisciplinary field that combines concepts from control systems, robotics, 
human-computer interaction, and cognitive science. 

In this part of the article, the control algorithm developed for robust and safe human robot 
interaction is described. An essential component for the solution is the impedance controller 
[9], which could be used to represent and evaluate human-operator dynamics and to control 
supporting effort of the mobile platform side during the interaction process. This study aims 
to improve human-robot physical interaction comfort in material handling tasks by 
incorporating AI learning methods into a smart platform. As the first step, the human 
operator's experience and estimation are utilized to adapt to the impedance of the platform, 
leading to a more personalized and comfortable interaction. This is achieved by incorporating 
the two strategies demonstrated in previous studies on force field tasks, as described in 
numerous references [11, 17]. According to these studies, humans adjust their impedance in 
response to perturbations by applying mainly two strategies: 

1) increasing impedance through co-interaction in the case of unpredictable perturbations, 
2) learning a feed-forward command to offset predictable perturbations. 

By incorporating these strategies into the smart platform, we hope to minimize position error 
and energy consumption during material handling tasks, leading to improved efficiency and 
reduced physical strain of the operator. 

On the other hand, the smart platform adjusts its own interaction strategy by changing the 
impedance parameters according to the correlation between detected features and human 
feelings, such as mass and damping coefficient for the former and level of operator
satisfaction for the latter. This enables the pl s individual 
experience in a timely manner and ensure interaction that is more comfortable. The 
adjustment process is accomplished using a Markov Decision Process (MDP). An MDP is a 
mathematical framework that is widely used to model decision-making situations. In the 
context of improving human-robot physical interaction comfort in material handling tasks, the 
MDP is used to model the decision-making process of the smart platform in adjusting its 
impedance parameters. An MDP is defined by the following components: 
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 A set of states of the world (S), which represent the various conditions or situations that 
the platform may encounter during material handling tasks. 

 A set of actions (A), which represent the different strategies that the platform can adopt to 
respond to the detected states. 

 A transition function (T(s, a, s )), which describes the probability of moving from one 
state to another state after taking an action. 

 A reward function (R(s, a)), which assigns a reward or cost to each state-action pair. 
 

based on the rewards and the transition probabilities. 

The platform uses this information to determine the optimal impedance adjustment that 
maximizes the expected reward over time, leading to improved comfort and efficiency in 
material handling tasks. The policy is updated iteratively as the platform learns from 
experience and improves its decision-making process over time. A reinforcement learning 
algorithm was implemented to include human feelings in the control system. As defined in 
Sutton and Barto Reinforcement Learning: An Introduction  [19], 

Reinforcement learning is an approach to learning from interaction with an 
environment, by trial and error, and receiving rewards or penalties for different 

 [19, p. xi] 

Reinforcement learning algorithms are built on the concepts of MDP. The first task when 
designing Q-Learning system is to define the environment. The environment consists of 
states, actions and rewards. The agent uses states and rewards as inputs and generates his 
actions as outputs. The Q-Learning algorithm was first introduced in the framework of the 
PhD thesis of Watkins in 1989 [24] and developed later in 1992 [23], which stands for a 
model-free reinforcement learning algorithm that uses the concept of the action-value 
function, also known as the Q-function. The Q-function is an estimate of the expected long-
term reward for a given state-action pair, and is updated iteratively as the agent interacts with 
the environment. 

3.1 States 

The number of states that may occur is limited and finite. Each possible setting of the 
impedance controllers can be considered as a state, and the agent can only be in one state at a 
time. This means that only one set of impedance controller settings can be selected and 
evaluated in each step. The study utilized four parameters for each impedance controller 
coefficient, which resulted in a total of 256 possible combinations. It is believed that this 
number of combinations is sufficient to demonstrate the learning process of the platform, 
although the trade-off between the flexibility of the settings and the time required for the 
learning process must be considered when determining the number of coefficients to be used 
in future studies. 

3.2 Actions 

The number of possible actions is finite. The agent will always need to choose from a fixed 
number of possible actions as was proved by the results of the regression analysis that was 
carried out for damping and mass coefficients. A set of possible actions was defined in the 
following way: the agent could apply two actions (increase or decrease) per each of the four 
parameters and carry out an additional do nothing action  when no change was required. The 
change of inertial and dumping components of the impedance controller leads to a change in 
the cart dynamics. 
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3.3 Rewards 

The reward system works as follows. The agent checks if the interaction dynamics is positive 
by comparing values of mean values and standard deviation for the current step and the 
previous step. Additionally, the agent checks if there is no emergency situation by analyzing 
the E-stop button state. Peaks of the interaction force have to be avoided as well. If a human 
operator thinks that the current settings are convenient for him he might give positive 
feedback. In the end, the rewards for different criteria are totaled. If none of the criteria were 
met, the reward is set to a negative one. 

4 Results 

Q-learning algorithm was implemented inside the high-level controller that is Raspberry Pi 4 
in our case by using Python. The information about process values (interaction forces, 
odometry) is supplied to high-level controller from low-level controller using the serial port. 
Using the same link information about the actual impedance controller parameters provided to 
low-level controller. Protocol uses a CRC data check. The data of biological markers is read 
from a smart band using a BLE protocol. The console output of the learning process is shown 
in Figure 1. 

 
Source: Own 
Fig. 1: Console output of the learning process 

Information consists of the current episode number, the number of the step inside the episode, 
the selected action, obtained reward and the new set of impedance controller parameters to be 
tested. The diagram of the Q-Learning process can be presented in the shape of a pseudo-code 
shown in Figure 2. 

In Figure 3 the graphic visualization of the Q-table values is illustrated. The representation of 
the high-rating areas is depicted in yellow, while the low-rating areas are shown in blue. At 
the start of the interaction process, the values in the Q-Table are equal. However, as soon as 
the algorithm takes action, the system state will change, and the corresponding value in the Q-
Table will be updated based on the reward information. The quality and speed of the 
reinforcement learning process are influenced by the teacher. If the human operator utilizes 
the user button to provide positive feedback or the e-stop to give negative feedback, it can 
significantly accelerate the learning process. 
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Source: Own 
Fig. 2: Learning function of the Q-Learning algorithm presented in pseudo-code 

 
Source: Own 
Fig. 3: Dynamic change of the Q-value during the learning process 

The changes in the Q-Table over time can be observed by examining the Q-Learning 
dynamics. The Q-Table is visualized using a color map (heat map). Initially, the Q-Values are 
relatively similar, and a significant portion of the color map is depicted in yellow. Over time, 
the color map becomes darker as the algorithm receives negative feedback about the 
impedance controller settings. In the long run, the majority of the color map is covered in dark 
blue and green, indicating the negative impact of the impedance controller setting on the 
interaction process. Only a tiny yellow line remains, representing the impedance controller 
settings that are fully responsive to the human operator s intention. The impedance controller 
settings that correspond to the maximum value of the Q-Table can be obtained by selecting 
the corresponding state. 

By observing s behavior, the mobile platform can adapt its 
parameters to match the operator, which can improve its performance in the presence of 
disturbances and its ability to recover from errors. The mobile platform can learn to anticipate 
and avoid dangerous situations, such as collisions with obstacles or other vehicles. 

Several scientific criteria are used to determine the robustness and safety of a mobile 
platform. These criteria include performance in the presence of disturbances, recovery from 
errors, safety, passivity, and efficiency. These criteria have been developed and studied over 
time by many engineers and scientists and have been formalized in various works, research, 
and standards. For instance, IEEE and ISO have developed standards for the safety and 
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performance of mobile robots and Automated Guided Vehicles (AGVs). The specific criteria 
and standards used to evaluate the robustness and safety of a mobile platform will depend on 
the specific application and environment in which it will be used. 

5 Limitations and Discussion 

Having specified these criteria, we believe that the current mobile platform might be robust 
and safe due to the following list of reasons: the maximum speed is restricted to prevent 
dangerous situations and unexpected behavior. An emergency stop button (E-stop) has been 
implemented to ensure additional safety. Moreover, the main power switch is available to 
control the power supply to the system. To further prevent dangerous situations, an interlock 
has been implemented to avoid instant changes in direction at high-velocity set-points. The 
system is also designed to slow down, but not accelerate in the opposite direction without 
reaching a low speed to prevent sudden changes in direction. The control system with the 
impedance controllers of rotational and translational motion was implemented in the 
experimental platform. It allows supporting human operator during the linear drive and turns. 
By analyzing the interaction characteristics, it was possible to obtain the dynamics relevant to 
the material handling task and to identify the physical measures, emotional feedback and 
biological markers that were used as additional sources of information to improve interaction. 
The platform works well with loads up to 500kg. Currently, the learning outcomes include a 
matrix of 256 components, which is not a limit for the algorithm; however, it is believed to be 
sufficient for demonstration purposes. 

Conclusion 

A mathematical and experimental model of the industrial power-assisted cart was developed. 
A great amount of work was performed in powered mobile platform programming and control 
system implementation. Therefore, artificial intelligence (AI) methods were employed to 
adjust the controller settings so that an operator can manipulate an industrial cart loaded up to 
500 kg with minimum physical effort and ultimate comfort. Human estimation criteria that 
characterize the satisfaction and comfort from the human-powered cart interaction process 
were synthesized. Based on these synthesized criteria, the human-powered cart interaction 
control algorithm was developed using AI methods (Q-learning). The performance of the 
proposed solution for the developed industrial cart was tested and verified. The research work 
contributed the following theoretical input into the field of technical cybernetics  the use of 
Q-learning algorithm in adjusting controller settings so that the mobile platform could 
successfully and effectively adapt to the unique gait and tasks of any operator it assists. 
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VERBESSERUNG DES KOMFORTS DER INTERAKTION ZWISCHEN MENSCH UND 

ROBOTER BEIM UMGANG MIT MATERIAL MIT HILFE EINER INTELLIGENTEN 

PLATTFORM 

Die Verwendung mobiler Plattformen kann den Angestellten bei der Automatisierung 
manueller Prozesse und bei der Effektivierung der Operation helfen, Zeit zu sparen und sicher 

vermag sich verschiedenen Aufgaben bei einer Belastung von 500 kg anzupassen. Das Ziel 

Belastung der Bedienung der mit dem Umgang mit Material verbundenen Aufgaben sowie in 
der 

 finden zur Anpassung an die individuellen Erfahrungen des Operators 
Verwendung, was 
Algorithmus Q-Learning mit 256 Ergebnissen der Lehre bei der Angleichung der Einstellung 
des Regler  

POPRAWA KOMFORTU FIZY A ROBOTEM 

ELIGENTNEJ PLATFORMY 

sztucznej inteligencji 

prowadzi -

 


