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PAVING LOW-TEMPERATURE ASPHALT ON THE B 169 HIGHWAY NEAR HEYDA 
    

Alexander Steinbach1; Peter Rott2 

1 Chemnitzer Verkehrsbau GmbH, Dresdner Str. 234, 09131 Chemnitz, Germany 

2 Ingenieurbüro Dr.-Ing. P. Rott, Am Dornbusch 6, 04509 Schönwölkau, Germany 

e-mail: 1alexander.steinbach@cvb-sachsen.de; 2ib-pr@outlook.de 

Abstract 

Research into lowering the temperature during the production and installation of hot asphalt 

has been going on for a long time. In addition to developing appropriate recipes, it is 

important to gain experience, particularly in asphalt paving technology, since in addition to 

the behavior of the different asphalt mixtures during their compaction, external factors such as 

the location of the project and weather conditions also play an important role. The testing of 

the low-temperature asphalt on the federal highway B 169 was carried out successfully. Due 

to the high pre-compaction by the paver screed, the required compaction values were 

achieved on the binder course with 4 rolling passes and on the surface course with 3 rolling 

passes. The viscosity-changing additives and the selected rolling technology had a positive 

influence on the results. However, precise measurement results for compaction could not be 

achieved using the PQI probe. 

Keywords 

Low-temperature asphalt; Behavior of asphalt mixtures; Asphalt-related emissions; PQI 

probe. 

Introduction 

Temperature reduction during hot mix asphalt production and paving has long been a subject 

of research, which led to the development of the corresponding information sheet (FGSV, 

2021) and recommendations for implementation (DAV, 2021). Tests have been carried out 

with the main objectives of saving energy and reducing CO₂ emissions. 

In addition, the Committee on Hazardous Substances of the Federal Institute for Occupational 

Safety and Health adopted a significantly lower occupational exposure threshold value for 

bitumen vapors and aerosols from bitumen in 2019. The 1.5 mg/m³ air threshold value will 

have to be met by January 1, 2025, which will require changes in the composition of asphalt 

mixes and other protective measures on paving equipment. 

Apart from research into the asphalt formulations themselves, it is important to gain 

experience, especially in asphalt paving technology, where external factors such as project 

location and weather conditions, as well as the behavior of different asphalt mixtures during 

compaction, play an important role. 

For these reasons, the German Federal Ministry of Transport and Digital Infrastructure issued 

Circular 09/2021 (BMDV, 2021) on the implementation of test tracks for construction 

projects on federal highways using low-temperature roller-compacted asphalt in order to gain 

as much knowledge as possible. 

© 2024 Author(s). This work is distributed under the Creative Commons Attribution-4.0 license 

(https://creativecommons.org/licenses/by-nc/4.0/). 

mailto:alexander.steinbach@cvb-sachsen.de
mailto:ib-pr@outlook.de
https://creativecommons.org/licenses/by-nc/4.0/
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The aforementioned Circular specifies the principles for the setup of test tracks. These are 

used to test the material under paving conditions, taking into account external factors. 

Chemnitzer Verkehrsbau GmbH was contracted to build a test track on the B 169 highway 

between Heyda and Stockhausen. 

As part of this project, a diploma thesis entitled “Non-Destructive Compaction Control for 

Quality Assurance in Asphalt Road Construction Using a PQI Probe” was conducted for the 

asphalt paving process. 

1 Definitions 

1.1 Low-Temperature Asphalt 

In addition to the relevant regulations for the delivery of asphalt mixtures (TL Asphalt – StB 

07/13) and the supplementary technical contract conditions and guidelines for the construction 

of asphalt pavements (ZTV Asphalt – StB 07/13), there are also the “Guidelines for Warm 

Mix Asphalt” (M TA) (FGSV, 2021). 

The aim is to reduce the production and working temperature of asphalt mixtures by up to 

30K using viscosity-modified bitumen or viscosity-modified additives. The benefits that can 

be achieved, such as energy and CO₂ savings and reduced fumes, are offset by the challenges, 

particularly when it comes to laying the asphalt. As a result, the lower temperature threshold 

for quality and damage-free compaction of the paved low-temperature asphalt hardly changes, 

so the effective compaction time is considerably shorter. 

1.2 Viscosity-Modified and Polymer-Modified Bitumens for Paving Applications 

Paving and polymer-modified bitumens are in accordance with TL Bitumen – StB with 

viscosity-modifying organic additives. 

1.3 Viscosity-Modifying Additives 

Organic or mineral substances are added to bitumen to modify properties at production and 

processing temperatures. 

2 Trial Paving of Low-Temperature Asphalt on the B 169 Federal Highway 

2.1 Test Field Program 

Due to the lack of knowledge about the compaction behavior of temperature-reduced asphalts 

under construction site conditions, the following priorities were defined for the investigation 

of both the binder course and the wearing course: 

1. investigation of temperature-dependent compaction behavior of low-temperature asphalt 

by documenting temperature and compaction history, 

2. determination of the compaction time during which the asphalt can be compacted in 

accordance with quality standards, 

3. investigation of the influence of weather conditions, air, and subgrade temperatures on the 

core temperature of paved asphalt, 

4. determination of precompaction by the paver, 

5. determination of the type and extent of the use of rollers with the number of rollers, the 

type of compaction, and the number of rollers passes until the completion of work, and 



 

 9 

6. investigation of the homogeneity of compaction over the entire road section. 

2.2 Measurement Program 

Recording of weather conditions, measurement of air and surface temperature in terms of 

location and number of measuring stations is shown in Figure 1. The stations 0 + 25 m and 

0 + 90 m of the test track were defined as measuring stations. 

 
Source: Own 

Fig. 1: Location of the measuring stations in the test field 

Three measuring points were marked at each of stations, as shown in Figure 2: 

▪ Edge area is at 0.50 m from road edge. 

▪ Center of wheel path is at 1.50 m from the road edge. 

▪ Center of lane is at 3.75 m distance from lane edge. 

 
Source: Own 

Fig. 2: Location of the measuring points at the stations 

2.3 Paving Machinery 

The equipment listed in Table 1 was used to carry out the asphalt work. 
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Tab. 1: Devices used for building asphalt roads 

Device Type Specifications Use 

Feeder 
Bomag Feeder BMF 

2500 M 

Bucket capacity: 15 t 

Output: 4000 t/h 

Belt width 1.20 m 

Mittelanger Gurt 6.50 m  

Binder course 

Wearing course 

Paver 
Dynapac Tracked 

Paver SD 2550 CS 

Hopper capacity: 15 t 

Theoretical paving capacity: 

1100 t/h 

Max. paving width: 8.80 m 

Compaction unit: rammer & 

vibration 

Screed heating: gas 

Binder course 

Wearing course 

Attachments Dynapac-V5100TV 

Gas-heated Vario screed 

Compaction unit: rammer & 

vibration 

Extension width: 7.50 m 

Binder course 

Wearing course 

Rollers 

Bomag BW 154 AP-4 

AM (with grit 

spreader) 

Tandem vibratory roller 

Tare weight: 7.30 t 

Drum width: 1.50 m 

Static line load: 25.00 kg/cm 

Wearing course 

Bomag BW 174 AP-4 

AM (with grit 

spreader) 

Tandem vibratory roller 

Tare weight: 9.50 t 

Drum width: 1.68 m 

Static line load: 29.80 kg/cm 

Binder course 

Wearing course 

Bomag BW 174 ACP-

5 AM 

Combination roller 

Tare weight: 9.30 t 

Drum width: 1.68 m 

Static line load: 29.20 kg/cm 

Binder course 

Bomag BW100 AD-5 

Tandem vibratory roller 

Tare weight: 2.50 t 

Drum width: 1.00 m 

Static line load: 13.00 kg/cm 

Transitions from 

old to new edges 

Source: Own 

2.4 Asphalt Mixture for the Test Track 

The mixture contained 

• temperature-reduced asphalt binder SMA 16 BS, binder PmB 25/45 VL, additive Viatop 

Premium, and 

• temperature-reduced stone mastic asphalt SMA 11 S, binder PmB 25/45 VL, additive 

Viatop Premium. 

The initial tests for both types were confirmed by the contracting authority. 

The mixture was delivered from the mixing plant in Breitenau; the transport distance to the 

construction site was 37.4 km. 

2.5 Intended Rolling Technology 

The following rolling technology was used: 
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• first roller pass: tandem rollers with static compaction, 

• further roller passes: heavy rollers with dynamic compaction. 

The rollers were equipped with the BOMAG measuring system and GPS receiver and are 

shown in Figure 3. 

 
Source: Own 

Fig. 3: Rollers in operation 

The above-mentioned equipment of rollers allows for the networking of the rollers. The 

number of passes and the resistance of the asphalt material can be recorded. 

2.6 Test Scope 

The following points indicate the kinds of tests performed: 

• temperature testing of air and substrate at the paving site, recording of weather conditions, 

• visual inspection of the condition of the asphalt mixture, 

• continuous testing of asphalt temperature on trucks as they arrive at the construction site, 

in the feeder, in the paver at the auger, during the rolling process on the surface of the 

paved asphalt, and recording of the core temperature, 

• control of paving thickness, 

• continuous roller compaction control and documentation, 

• compaction measurements with the PQI probe to be tested as a non-destructive and non-

nuclear alternative to the Troxler probe, 

• drill core tests after asphalt paving is completed to verify the results of the PQI probe 

measurements. 

2.6.1 PQI Probe 

The physical principle of the PQI-Probe shown in Figure 4 and its use shown in Figure 5 is 

based on the different reactions of air and asphalt to the emitted electric field. Calibrating the 

probe to the initial test of the material provides a target value in the form of the dielectric 

constant. Deviations are due to the inclusion of air. Once the predetermined dielectric constant 

is reached, it also means that the required density from the initial test has been achieved. 
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Source: Labtek, (2021) Source: Own 

Fig. 4: PQI probe Fig. 5: PQI probe measurements 

2.7 Test Procedure 

Measurement of existing ambient conditions has been performed by the paver’s mobile 

weather station: These conditions include air temperature, clouds, precipitation, wind speed, 

and humidity. Ground temperature was measured with an infrared thermometer. The 

measured values of those conditions are shown in Table 2. 

Tab. 2: Ambient conditions 

Ambient conditions Binder course Wearing course 

Substrate temperature 21 °C 22 °C 

Air temperature 18 °C 18 °C 

Cloud cover overcast 8/8 slightly overcast 4/8 

Precipitation 0 l/m² 0 l/m² 

Wind speed 5 km/h 3 km/h 

Humidity 94% 91% 
Source: Own 

The asphalt temperatures were then measured using a penetration thermometer at the “mixing 

plant”, “arrival on-site”, and “feeder hopper” stations. 

Additional temperature measurements have been taken by infrared thermometers permanently 

installed on the paver in the hopper and on the spreading auger. The times of all temperature 

measurements were documented. This enabled a time-dependent curve to be displayed in the 

subsequent evaluation. The first measurement of compaction and temperature is taken by the 

PQI sensor as soon as the asphalt is placed on the screed. 

It is important that no compaction by the rollers has taken place at this point. The measured 

compaction value, therefore, corresponds to the precompaction of the screed. This value is 

measured at the 3 measurement points described in the test program in Figure 2. The 

comprehensive temperature measurement by an infrared scanner on the freshly paved surface 

is also free from the influence of the rollers. It can, therefore, be compared with the PQI 

probe. 
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Source: Own 

Fig. 6: Surface temperatures of the binder course behind the paver 

Spray paint markings were applied to the surface to ensure that compaction measurements 

were always taken at the same location. This allowed for better comparability. From that point 

on, compaction, surface temperature, and core temperature (Figure 6) were recorded for each 

compaction operation by the rollers, taking into account the type of compaction and time. The 

core temperature was measured with a penetration thermometer at the edge of the asphalt 

layer in the center of the layer. 

When measuring compaction, it was important to ensure that there were no air pockets due to 

an uneven surface or materials on the sensor plate. It was important to ensure that the sensor 

plate was constantly cleaned and in full contact with the surface during the measurement 

process. 

3 Results 

3.1 Mixture Heat Loss 

Analysis of the temperature data showed that, contrary to expectations, the heat loss during 

transport was minimal despite the 37 km distance. The temperature drop of the mixture from 

the time it left the mixing plant to the time it arrived at the paving site was 2-4 K, depending 

on the truck. This clearly demonstrates the effectiveness of the tarpaulins on the truck and the 

use of thermal troughs. 

When the mixture was exposed to ambient conditions (temperature, weather, wind) during 

unloading, a sharp drop in temperature was observed. This was significant throughout the 

conveying process from the feeder to the paver, as shown in the diagram in Figure 7. 

For the binder mixture, an average temperature difference of 6.83 K was measured over the 

entire transport from the mixing plant to the paver. The transport route accounts for 2.83 K, 

while the remaining 4 K is due to the time spent conveying the material to the paver. 
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Source: Own 

Fig. 7: Heat loss of the mixture for wearing courses from the mixing plant to the paver 

Proportionally, however, the greatest drop in temperature during the paving operation occurs 

from the time the mixture leaves the paver. This is due to the rearrangement of the material 

from a heap to a thin layer with a correspondingly large surface area. This also provides the 

contact surface for cooler weather conditions. In addition, additional heat is drawn from the 

rollers and the watering of the drums. 

Accordingly, the compaction threshold temperature of 100°C is reached on the surface after 

10 minutes for the binder course and after 9 minutes for the wearing course. 

This period may be extended depending on the core temperature of the paved layers. The 

average temperature difference between the surface and the core material is 14.23 K for the 

binder course and 8.34 K for the wearing course. Because the wearing course is significantly 

thinner, its temperature drops faster. 

This higher temperature in the center of the layer has a positive effect on the compaction time 

of 10 minutes for the binder course and 4 minutes for the wearing course. 

In this context, it was interesting to observe the temperature evolution over the cross-section. 

It was assumed that the mixture loses temperature as it travels through the auger and is coolest 

at the edges of the paved surface. In principle, this assumption was confirmed, but the 

temperature in the middle of the road was only slightly higher than at the edge. 

3.2 Compaction Progression 

The compaction process begins with pre-compaction by the paver screed. This ranged from 

91% to 94% in the measurements. The lowest value was again measured at the edge. This is 

due to the thermo-viscous behavior of the material and the structure or vertical stiffening of 

the screed. This is much lower on both sides, which can cause the screed to deflect due to 

compaction pressure. Nevertheless, the measured values are consistently in the high range, 

bearing in mind that a hard bitumen mixture is used, which is difficult to compact. This 

confirms the positive effect of viscosity-changing additives on the material. 

This effect is also evident when looking at the compaction progression of the binder course. 

Taking all measuring stations into account, it took an average of only 4 roller passes to reach 

the 98% threshold. The first roller passes show significantly higher compaction efficiency 

than the subsequent passes, as shown in Figure 8. This is due to the exponential compaction 

effort and the decrease in thermos-viscous properties during the compaction process. The 

threshold temperature of 100°C in the core of the layer is not reached until the end of 

compaction. Therefore, under the described boundary conditions, the mixture could be 

classified as suitable for practical use. 
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Source: Own 

Fig. 8: Compaction progression of the binder course 

The wearing course shows a similar compaction progression, with an average of only three 

passes necessary to achieve the required minimum compaction. This can be explained by the 

thinner layer thickness. 

On average, no increase in compaction was observed after the sixth roller pass, and 

subsequent compaction processes resulted in a slight decrease in compaction. Once a 

temperature of 100°C is reached, compaction does not increase. Further passes may cause 

damage to the structure. In addition, the direct correlation between temperature and 

compaction was demonstrated in the wearing course, as shown in Figure 9. 

 
Source: Own 

Fig. 9: Progression of compaction in the wearing course as a function of temperature 

As a result, the inclusion of the viscosity-changing additives significantly improved the 

compaction behavior of the stone mastic asphalt and achieved the desired degree of 

compaction with less compaction effort. 

The suitability of the material under the given conditions can be confirmed by the compaction 

values obtained. 

It was important to test the PQI probe’s practical suitability. The measured values were 

collected and compared to the values of the cores taken. The results differed in both the binder 

course and the wearing course. In the binder course, the 100.4% compaction measured with 

the PQI probe contrasted with the 98% measured with the core. 
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Conclusion 

Low-temperature asphalt has been successfully tested on the B169 highway. A large amount 

of measured data allowed detailed conclusions to be drawn. 

An important consideration is the temperature development of the mixture from production to 

paving. It was found that the sub-process of transferring the mixture from the truck to the 

feeder to the paver must be given great importance, as it is here that the temperature drops 

significantly. Adverse weather conditions can exacerbate this, further reducing the time frame 

for successful compaction and compromising the quality of the pavement. 

Due to the high precompaction of the mixture by the paver, the required compaction values 

were achieved with four passes on the binder course and three passes on the wearing course. 

The selected rollers and the viscosity-changing additives in the mixture had a positive 

influence on these results. 

However, in its current form, the PQI probe can only indicate the compaction achieved. 

Precise measurements require further improvements. 

The increased use of low-temperature asphalt is strongly recommended for environmental and 

economic reasons. However, in addition to suitable asphalt formulas, suitable mechanical 

modifications to the paving equipment are essential to meet occupational health and safety 

requirements for significant aerosol reduction during asphalt paving. This aspect was not part 

of the testing on the B 169 highway. 
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POKLÁDKA NÍZKOTEPLOTNÍHO ASFALTU NA SILNICI B 169 U OBCE HEYDA 

Výzkum snižování teploty při výrobě a pokládce horkého asfaltu probíhá již dlouhou dobu. 

Kromě vývoje vhodných receptur je důležité získávat zkušenosti, zejména v oblasti 

technologie pokládky asfaltových směsí, protože kromě chování různých asfaltových směsí 

při jejich hutnění hrají důležitou roli také vnější faktory jako např. umístění projektu 

a povětrnostní podmínky. Testování nízkoteplotního asfaltu na spolkové dálnici B 169 

proběhlo úspěšně. Díky vysokému předhutnění pomocí rozmetadla bylo dosaženo 

požadovaných hodnot zhutnění na živičné vrstvě při 4 pojezdech a na povrchové vrstvě při 

3 pojezdech. Přísady měnící viskozitu a zvolená technologie válcování měly pozitivní vliv na 

výsledky. Přesných výsledků měření zhutnění však nebylo možné dosáhnout pomocí sondy 

PQI. 

EINBAU VON NIEDRIGTEMPERATUR-ASPHALT AUF DER BUNDESSTRAßE B169 

BEI HEYDA 

Seit langem wird an der Absenkung der Temperatur bei der Herstellung und dem Einbau von 

Heißasphalt geforscht. Neben der Entwicklung geeigneter Rezepturen ist es vor allem in der 

Asphalteinbautechnik wichtig, Erfahrungen zu sammeln, da neben dem Verhalten der 

verschiedenen Asphaltmischungen bei der Verdichtung auch äußere Faktoren wie die Lage 

des Bauvorhabens und die Witterungsverhältnisse eine wichtige Rolle spielen. Die Erprobung 

des Niedrigtemperatur-Asphalts auf der Bundesstraße B 169 wurde erfolgreich durchgeführt. 

Aufgrund der hohen Vorverdichtung durch die Einbaubohle wurden die geforderten 

Verdichtungswerte in der Binderschicht mit 4 Walzübergängen und in der Deckschicht mit 

3 Walzübergängen erreicht. Die viskositätsverändernden Zusätze und die gewählte 

Walztechnik hatten einen positiven Einfluss auf die Ergebnisse. Genaue Messergebnisse für 

die Verdichtung konnten mit der PQI-Sonde jedoch nicht erzielt werden. 

UKŁADANIE ASFALTU NISKOTEMPERATUROWEGO NA DRODZE B 169 W POBLIŻU 

MIEJSCOWOŚCI HEYDA 

Badania nad obniżaniem temperatury podczas produkcji i układania gorącego asfaltu trwają 

już od dłuższego czasu. Oprócz opracowania odpowiednich receptur, ważne jest zdobycie 

doświadczenia, szczególnie w technologii układania asfaltu, ponieważ oprócz zachowania 

różnych mieszanek asfaltowych podczas ich zagęszczania, ważną rolę odgrywają również 

czynniki zewnętrzne, takie jak lokalizacja projektu i warunki pogodowe. Testy asfaltu 

niskotemperaturowego na autostradzie federalnej B 169 zakończyły się sukcesem. Dzięki 

wysokiemu zagęszczeniu wstępnemu przez stół układarki, wymagane wartości zagęszczenia 

zostały osiągnięte na warstwie wiążącej przy 4 przejazdach walca i na warstwie wierzchniej 

przy 3 przejazdach walca. Dodatki zmieniające lepkość i wybrana technologia walcowania 

miały pozytywny wpływ na wyniki. Nie udało się jednak uzyskać precyzyjnych wyników 

pomiaru zagęszczenia przy użyciu sondy PQI. 
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Abstract 

The purpose of this article is to illustrate the intuitively understood links between the social 

and economic characteristics of an area and the waste production at a given location. These 

relationships have been investigated using statistical data from thirteen regions in the Czech 

Republic between 2019 and 2021. In order to evaluate the data, freely available tools such as 

Python 3.8.16 and a number of its libraries, e.g. matplotlib, plotly, sklearn, numpy and others, 

have been used. 

Keywords 

Waste production; Spatial distribution; Regions; Social characteristics; Economic 

characteristics. 

Introduction 

Waste is produced in different regions of the Czech Republic at different rates. The total 

waste production consists of hazardous waste (HW) and non-hazardous waste (NHW). 

A special subgroup of waste is municipal solid waste (MSW), which accounts for about 1/8 of 

the total production and is generated by the municipality by depositing the waste in 

a designated place. 

The amount of waste produced can be influenced by a number of factors. A major part of the 

total waste production is the result of economic activities of various kinds, i.e. the business 

waste. Assessing the total waste production in the regions, four major waste producing sectors 

and two small quantity waste producing sectors were considered. 

Due to the different origins of the waste, the amount of each waste category produced in the 

regions was also compared with respect to the social and demographic characteristics of the 

localities. 

1 Statistical Data 

Data sources for the evaluation of waste production were taken from the website of the Czech 

Statistical Office (ČSÚ). Specific sources of partial data are given in the relevant chapters. 

1.1 Waste Production in the Czech Republic by Sectors 

In 2008 the classification of economic activities (CZ-NACE) was introduced in the Czech 

© 2024 Author(s). This work is distributed under the Creative Commons Attribution-4.0 license 
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Republic. Information on waste production for the so-called CZ-NACE sections is available 

on the ČSÚ website (ČSÚ, 2021a). On the basis of this source, 4 major waste-producing 

sections and 2 sections with small waste production have been identified: 

• construction (largest waste producers, see Al-Akel (2023), 

• public administration and defense; compulsory social security, 

• industry and mining, 

• trade and transport, 

• science, administration (small quantity producers), and 

• monetary sector. 

1.2 Total Waste Production in the Regions of the Czech Republic 

Information on the total waste production in the regions and the part of hazardous waste is 

also available on the CSU website (CSU, 2021a) (here specifically for 2021, with links to 

previous years). Both information on total year waste production in tons and data expressing 

kilograms per capita waste production are available. 

1.3 Municipal Solid Waste Production in the Regions of the Czech Republic 

Downloadable files with data on the amount of municipal solid waste produced in the districts 

of the Czech Republic are also available on the CSU website. These figures are also expressed 

both in tons of production and in kilograms per capita. 

1.4 Selected Measures Taking into Account the Characteristics of the Regions 

For the impact assessment the following regional characteristics have been selected: 

• Population [pcs] (ČSÚ, 2021b). 

• Population density [pcs/km2] (ČSÚ, 2021c). 

• Deaths in regions per year [pcs]. 

• Average wage [CZK]. 

• Median wages in districts [CZK] (CSTJ, 2021d). 

• Number of new dwellings per year [pcs]. 

• Number of new dwellings per 1000 inhabitants per year [pcs]. 

• Gross value added of 6 selected industries (CZ-NACE) with differently high waste 

production in the regions (CSU, 2021e). 

2 Data Aggregation and Data Processing 

The data on waste production in the regions and selected characteristics of the regions were 

grouped into a common table by year, thus forming the basic source for the subsequent 

analysis. 

For the purpose of creating interactive graphs and contingency tables (especially in Google 

Sheets), the characteristics of the regions were reclassified in the form of verbal ratings 

(quantiles – terciles, quintiles). This partial method of data processing is not presented in this 

article. 

3 Data Evaluation 

Waste production is usually quantified either in absolute tonnage or in kilograms produced 

per capita. The differences in total waste production between regions are more noticeable in 

the case of absolute waste production in tons. Relating the amount of waste produced to the 

area of the region leads to the same findings. 
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3.1 Visualization in Python 3 

Using Python 3 (Python Software Foundation, 2022) tools data analysis was performed 

without reclassifying the characteristics into verbal rating categories. First, a linear 

dependence between a large proportion of the regional characteristics was established through 

matrix plots. It turned out that all the characteristics expressing general value added (GVA) 

are linearly dependent on construction and this is further linearly dependent on population. 

This finding leads to the ability of expressing total waste production from knowing only the 

population of the region, see Figure 1. 

 
Source: Own 

Fig. 1: Linear dependence of the amount of total waste production on the number of 

inhabitants, where ‘STC’ is Central Bohemian Region , ‘JHC’ is South Bohemian 

Region, ‘PLK’ is Plzen Region, ‘KVK’ is Karlovy Vary Region, ‘ULK’ is Ústí nad 

Labem Region, ‘LBK’ is Liberec Region, ‘KHK’ is Hradec Králové Region, ‘PAK’ is 

Pardubice Region, ‘VYS’ is Vysočina Region, ‘JHM is South Moravian Region, 

‘OLK’ is Olomouc Region, ‘ZLK’ is Zlín Region, and ‘MSK’ is Moravian-Silesian 

Region. Prague is not included. 

It is interesting to observe the relationship between the production of MSW and the 

differences in the per capita production of MSW in comparison with the population density in 

the suburbs. With increasing population density, the amount of waste produced per capita 

varies only in a rather narrow band of values, see Figure 2. 
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Source: Own 

Fig. 2: Decrease in municipal waste with increasing population density, where ‘STC’ is 

Central Bohemian Region , ‘JHC’ is South Bohemian Region, ‘PLK’ is Plzen Region, 

‘KVK’ is Karlovy Vary Region, ‘ULK’ is Ústí nad Labem Region, ‘LBK’ is Liberec 

Region, ‘KHK’ is Hradec Králové Region, ‘PAK’ is Pardubice Region, ‘VYS’ is 

Vysočina Region, ‘JHM is South Moravian Region, ‘OLK’ is Olomouc Region, 

‘ZLK’ is Zlín Region, and ‘MSK’ is Moravian-Silesian Region. Prague is not 

included. 

4 Results 

For the total waste production in tons, the graphs in Figure 1 and 2 showed its linear 

dependence on several selected, correlated characteristics of the regions. Demographic 

characteristics such as the number of retirees, population, and the number of deaths showed 

the best correlation with waste production followed by economic characteristics, i.e. GVA of 

trade and transportation and GVA of construction. Pearson correlation coefficients come out 

close to one. 

df['Old age retirees [count]'].corr(df['Waste [t]']) => 0.9796 
df['Number of residents [count]'].corr(df['Waste [t]']) => 0.9782 
df['Deaths [ks]'].corr(df['Waste [t]']) => 0.9564 
df['Trade a\nTransport\n[CZK]'].corr(df['Waste [t]']) => 0.9378 
df['Construction\n[CZK]'].corr(df['Waste [t]']) => 0.9367 

For waste production in absolute quantities (tons), population always figured among the three 

regions’ characteristics that are very well correlated with waste (hazardous and municipal) 

production. 
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No clear dependence on the characteristics could be found for the amount of waste per capita, 

but this is unnecessary as the two figures can be transformed to each other. 

By analogy to the quantity of waste, much of the remaining demographic and economic 

characteristics of regions could be approximated from knowledge of population. 

Conclusion 

The analysis shows that the waste production in the regions of the Czech Republic in the 

years 2019 to 2021 can be very well expressed by linear functions depending on the number 

of inhabitants. This means that waste production over a selected time period can be estimated 

in different locations based on the population of the area. At the same time, it is sufficient to 

operate with the absolute quantities of waste and not with their values related to the 

population. 
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SROVNÁNÍ PRODUKCE ODPADU V KRAJÍCH ČESKÉ REPUBLIKY V LETECH 2019-2021 

Účelem tohoto článku je ilustrace intuitivně chápaných souvislostí mezi společenskými a 

ekonomickými charakteristikami území a produkcí odpadů na dané lokalitě. Uvedené vztahy 

byly zkoumány na statistických datech z krajů České republiky v letech 2019 až 2021. Za 

účelem vyhodnocení dat byly využity volně dostupné nástroje jako Google Sheets, Python 

3.8.16 a řada jeho knihoven, např. matplotlib, plotly, sklearn, numpy a další. 

VERGLEICH DER ABFALLPRODUKTION IN DEN GEBIETEN DER TERRITORIALEN 

VERWALTUNG IN DER TSCHECHISCHEN REPUBLIK IN DEN JAHREN 2019-2021 

Der Artikel hat sich zum Ziel gesetzt, die intuitiv verstandenen Zusammenhänge zwischen der 

gesellschaftlichen sowie wirtschaftlichen Ausprägung des Gebietes und der Abfallproduktion 

an dem entsprechenden Ort darzustellen. Die dargestellten Beziehungen wurden auf der Basis 

von statistischen Daten aus den Gebieten der territorialen Verwaltung der Tschechischen 

Republik in den Jahren 2019 bis 2021 untersucht. Für die Auswertung der Daten wurden frei 

zur Verfügung stehende Tools verwendet, wie zum Beispiel Google Sheets, Python 3.8.16 

und eine Reihe Register wie matplotlib, plotly, sklearn, numpy und weitere. 

PORÓWNANIE PRODUKCJI ODPADÓW W REGIONACH REPUBLIKI CZESKIEJ 

W LATACH 2019-2021 

Celem niniejszego artykułu jest zilustrowanie intuicyjnie rozumianych zależności między 

społecznymi i gospodarczymi cechami regionu a produkcją odpadów w danej lokalizacji. 

Przedstawione zależności zostały zbadane przy użyciu danych statystycznych z regionów 

Republiki Czeskiej w latach 2019-2021. Do oceny danych wykorzystano ogólnodostępne 

narzędzia, takie jak Arkusze Google, Python 3.8.16 i szereg jego bibliotek, takich jak 

matplotlib, plotly, sklearn, numpy i inne. 
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Abstract 

Ensuring public safety on our roads is a top priority, and the prevalence of road accidents is 

a major concern. Fortunately, advances in machine learning allow us to use data to predict and 

prevent such incidents. Our study delves into the development and implementation of 

machine learning techniques for predicting road accidents, using rich datasets from Catalonia 

and Toronto Fatal Collision. Our comprehensive research reveals that ensemble learning 

methods outperform other models in most prediction tasks, while Decision Tree and K-NN 

exhibit poor performance. Additionally, our findings highlight the complexity involved in 

predicting various aspects of crashes, as the Stacking Regressor shows variability in its 

performance across different target variables. Overall, our study provides valuable insights 

that can significantly contribute to ongoing efforts to reduce accidents and their consequences 

by enabling more accurate predictions. 

Keywords 

Accident prevention; Machine learning; Traffic safety; Road safety; Accident forecasting; 

Risk assessment. 

Introduction 

Road traffic accidents continue to be a serious global public health concern, resulting in 

significant human and economic costs. Several factors contribute to the severity of these 

accidents, including driver behavior, environmental conditions, vehicle type, and road 

characteristics (Basagaña & de la Peña-Ramirez, 2023; Behzadi Goodari et al., 2023; WHO, 

2018). According to the World Health Organization (WHO), approximately 1.35 million 

people lose their lives in road traffic accidents annually, with millions more suffering non-

fatal injuries (WHO, 2018, 2024). The WHO predicts that by 2030, traffic accidents will be 

the fifth leading cause of death worldwide (WHO, 2018). Between 20 and 50 million people 

are injured, and 1.3 million die in motor vehicle accidents yearly. At least 120 people each 

year are killed, and 2.4 million people are injured due to road traffic accidents in the European 

Region of the WHO (WHO, 2024; WHO Regional Office for Europe, 2009). However, 90% 
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of these fatalities occur in low- and middle-income countries. A total of 42,939 people died in 

motor vehicle crashes in 2021, see Figure 1. These deaths occurred in 39,508 crashes 

involving 61,332 motor vehicles. This was a 10% increase in deaths compared with 2020 

(Insurance Institute for Highway Safety, 2024). 

 
Source: Own processing of data (Insurance Institute for Highway Safety, 2024). 

Fig. 1: Motor vehicle crash deaths and deaths per 100,000 people over the years 1975-2021 

Moreover, road accidents have a significant impact on healthcare systems, societies, and 

economies (WHO, 2021). Because of the unpredictable nature of road accidents, statistical 

predictive models have been created to assess their causes and effects (Comi et al., 2022). 

This research aims to enhance the range of predictive models employed in road crash 

prediction and severity analysis by utilizing various machine learning models, including 

Linear Regression, Decision Tree, Random Forest, Ridge Regression, Lasso Regression, 

ElasticNet Regression, Gradient Boosting, Support Vector Regressor, K-Nearest Neighbors, 

XGBoost, LightGBM, and a Stacking Regressor. This study aims to identify significant 

predictors of road crash severity, utilizing data from the Department of the Interior, Servei 

Català de Trànsit, Government of Catalonia. The exploration of an array of machine learning 

models to predict road crash severity represents the novelty of this research, moving beyond 

the predominant focus on Artificial Neural Networks (ANNs) and Support Vector Machines 

(SVMs) in previous studies. 

The article provides a comprehensive study covering some key aspects. It starts with an in-

depth literature review that categorizes previous studies and highlights the evolution of 

machine learning methodologies for both classification and regression tasks in this field. The 

data collection process is then illustrated, addressing the challenges related to data quality and 

availability. Extensive feature engineering is explored to make the most of various data 

attributes, which enhances the accuracy and reliability of our predictive models. Finally, the 

article concludes with important recommendations to prevent road accidents. 

1 Related Work 

The use of machine learning has improved the prediction of traffic accidents. However, due to 

the distinct features of road accidents in different areas and the variety of machine learning 
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models that can be used, further investigation is required(Yannis et al., 2017). After a series of 

Artificial Neural Network models, Delen et al. (2006) speculated on the potential nonlinear 

relationships between injury severity and crash-related factors (ANNs) (Delen et al., 2006). 

Crash outcomes were significantly affected by factors such as whether or not the driver was 

wearing a seatbelt, the driver was under the influence of alcohol or drugs, the driver's age, 

gender, and the kind of vehicle. The weather and time of the day did not have a significant 

impact on the severity of the injury risk. Moghaddam et al. used ANNs to assess the severity 

of crashes and predict their occurrence on urban roads (Moghaddam et al., 2011), which was 

similar to Delen et al.´s findings (Delen et al., 2006). 

The acquired data showed that the most critical factor that significantly increases the severity 

of crashes on urban highways is road width. Other factors that contributed to the severity of 

such crashes include head-on collisions, the type of vehicle at fault, disregarding lateral 

clearance, disregarding the distance, being unable to control the car, exceeding the maximum 

speed limit, and driver veering to the left. Although algorithms like neural networks are 

effective in anticipating and classifying data, they lack the interpretive capabilities of people, 

making them seem like a “black box” that is difficult to understand and get individualized 

feedback from (Moghaddam et al., 2011). As a result, humans cannot use these algorithms to 

manage and prevent mishaps. The lack of interpretability in AI-driven decisions can be a 

concern in fields where transparency is crucial. As a result, researchers and practitioners may 

choose more interpretable modeling approaches like decision trees or linear models. However, 

recent advancements in explainable AI have provided methods to understand complex models 

like ANNs. These techniques allow for the calculation of feature importance, helping 

researchers identify the most influential input variables in driving the model's predictions. By 

using these methods, researchers can improve the transparency and interpretability of ANNs 

and other advanced models, making AI-driven insights more accessible and actionable in 

critical fields such as healthcare, finance, and autonomous systems. In addition, over six 

years, Alkheder et al. conducted research over six years using ANN to predict the injury 

severity of road accidents using 5973 records of traffic incidents that happened in Abu Dhabi 

(from 2008 to 2013) (Alkheder et al., 2017). Following each incident, 48 individual 

characteristics were recorded as part of the accident report. The number of features and injury 

categories during pre-processing was limited to 16. The results of these experiments 

demonstrate the developed ANN classifiers’ ability to forecast the severity of accidents 

accurately. Prediction accuracy for the whole model was 81.6% on the training data and 

74.66% on the test data. Minor, moderate, severe, and fatal were converted from ordinal to 

numeric (1, 2, 3, 4) forms of the dependent variable, injury severity. An Ordered Probit was 

performed using R language. Compared to the ANN’s 74.6% accuracy, the Ordered Probit 

model’s 59.5% accuracy was much worse. As part of an ANN, Kunt et al. (2012) used a 

genetic algorithm pattern search and a Multi-Layer Perceptron (MLP) structure modeling 

strategy. The models were developed using data from the 1,000 incidents on the Tehran-

Ghom Freeway in 2007. The R-value for the ANNs forecast was the highest, coming in at 

around 87%, indicating that it was the most accurate (Kunt et al., 2011). 

Kaplan and Prato (2012) conducted a study on school bus safety and found that school buses 

have lower accident rates and less severe accidents than other buses., ranging from 19.8 to 

37.8% (Kaplan & Prato, 2012). The reasons for this could be due to reduced driving speeds 

and stricter federal school bus regulations. However, there is still room for improvement in 

school bus safety. To reduce school bus accidents, it is important to educate other drivers, 

especially teen drivers, in school zones. Chang and Chien (2013) collected truck-involved 

accident statistics from Taiwan’s national roadways for 2005-2006 (Chang & Chien, 2013). 

The authors used a CART model, a non-parametric combination of a classification tree and a 
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regression tree. The results showed that intoxicated driving, seatbelt use, vehicle type, 

collision type, and contributory variables resulting in driver/vehicle action, number of 

vehicles involved, and accident site were the most critical factors in determining injury 

severity after truck crashes. 

An alternative rule-based solution to DTs was proposed in a study by (Hashmienejad & 

Hasheminejad, 2017). To optimize and find rules based on support, confidence, and 

comprehensibility metrics, the authors modified a multi-objective genetic algorithm called the 

nondominated sorting genetic algorithm (NSGA-II). The evaluation results showed that the 

proposed method outperformed classification techniques like ANN, SVM, and conventional 

DTs in terms of classification metrics like accuracy (88.2%) and performance metrics of rules 

like support (0.9) and confidence (0.9). (0.79 and 0.74, respectively). 

In another study by Taamneh et al. (2017), rules produced by the decision tree and the rules 

induction were retrieved to understand the significant factors linked with accident severity. 

The researchers found that victims’ ages, genders, nationalities, crash years, injury counts, 

and accident types mattered the most among the factors they examined. It was determined if 

the Support Vector Machine (SVM) model or the Ordered Probit (OP) model was more 

efficient. The SVM model was found to be superior to the OP model for predicting the 

severity of injuries sustained in a collision. The SVM model had higher accuracy (48.8%) 

than the OP model (44.0%) in terms of correct predictions. Despite the SVM model’s multi-

class classification difficulty, it outperformed the OP model in predicting the frequency of 

mild injuries. 

De Oña et al. conducted a study on the severity of road accidents in Spain using a machine-

learning technique. Three different Bayesian Networks (BNs) were built using 18 variables 

that reflected the relevant parameters to classify incidences as either lightly hurt, dead, or 

badly injured (de Oña et al., 2014). Accident classification, driver age, illumination, and 

several injuries were found to be significant inferential variables for predicting fatal and 

catastrophic injury events (de Oña et al., 2014). In addition, Monedero et al. used time-series 

techniques based on the concept of fractional integration to analyze the statistical properties of 

the number of road accidents on Spanish roads. They found that the series examined displayed 

very low degrees of persistence, with the orders of integration being around 0, showing a 

short memory pattern (Duarte Monedero et al., 2021). 

Statistical analysis has been used along with machine learning techniques to quantify the 

severity of road accidents and understand the correlation between injury severity outcomes 

and driver or vehicle characteristics, highway geometric factors, environmental conditions, 

and accident parameters. Yan et al. (2005) (Yan et al., 2005) applied binary logistic regression 

models to investigate two-vehicle rear-end collisions at signalized crossings where both 

vehicles continued straight. There were various intersection-related elements (e.g., division, 

number of lanes at crash location, and speed limit). The rear-end crash dichotomy-dependent 

variable (represented by "1") versus other crashes (represented by "0") was used in this 

modeling. It is important to carefully interpret the results of this modeling as it compares rear-

end crashes to other crashes and explores the driver, vehicle, and specific crash conditions in a 

better way. 

Mohamed et al. (2013) analyzed two pedestrian injury severity datasets from New York City, 

U.S. (2002-2006) and Montreal, Canada (2003-2006) and the Ordered Probit and Multinomial 

Logit models (Mohamed et al., 2013). They found that fatal pedestrian accidents were more 

likely to occur in both cities due to various factors, such as the presence of heavy vehicles, 

lack of lighting, and the prevalence of mixed land use. Researchers Castro and Kim (2016) 

found that the use of seatbelts, the nature of the accident, and the location of the collision all 
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contributed to a significant increase in the chance of severe injuries in truck accidents (Castro 

& Kim, 2016). To foretell how severe motorway accidents will be. Zheng et al. (2019) looked 

at fatigue-related mortality in 21 cities in Guangdong province, the Chinese region with the 

highest rate of road accidents (Zheng et al., 2019). Compared to evening rush hours, crashes 

caused by fatigue were 1.79 times more likely to occur during morning rush hours (7 am to 9 

am), with odds ratios of 1.79 and 0.55, respectively (5 pm to 8 pm). 

It has been found that the probability of being involved in a crash that leads to a severe injury 

or death is 1.84 times higher during the morning than in the afternoon. These findings support 

our previous research that indicated that lack of sleep has a negative impact on one’s ability to 

stay in the lane during early-morning drives. These results imply that sleep deprivation is a 

concern even during short trips in the morning and thus, further investigation is needed to 

explore this interesting observation. While most machine learning research has concentrated 

on either the artificial neural network (ANN) model or the Support Vector Machine (SVM), 

this study examined various models to evaluate which worked best with the data. Based on 

their analysis, Yokoyama and Yamaguchi (2020) found that the RF model was marginally 

more precise than the ANN model (Yokoyama & Yamaguchi, 2020). However, RF proved its 

efficiency in accident prediction accuracy assessment for highway-rail grade crossings (Zhou 

et al., 2020) as well as other applications, especially in industry (H. Zermane & Drardja, 

2022). 

Recent years have seen significant improvement in automated vehicle (AV) technology, with 

many countries actively testing shared automated shuttle buses on public highways, including 

Australia, France, and Sweden. (Lee et al., 2024; Rezaei & Caulfield, 2020). AVs have been 

connected to several benefits. They solve a problem with the standard job description for 

drivers. As AVs become more commonplace, drivers’ expectations and concerns will shift 

towards other Vehicles. Acceptance from drivers is crucial for integrating AVs into existing 

traffic systems (Kaye et al., 2020). According to Papadoulis et al. (2019) (Papadoulis et al., 

2019), automatic cars are safer on the road than human drivers. While Noy et al. (2018) (Noy 

et al., 2018) show that AV can make prudent judgments on incoming traffic, Beirigo et al. 

(2018) (Beirigo et al., 2018) highlight AV’s capacity to carry freight and operate with 

unlicensed drivers. Attitudes about AVs, however, may vary by country (Schoettle & Sivak, 

2014). To the author’s knowledge, there is no research on public opinion of AVs in the 

Catalan region. Studies of local sentiment toward autonomous vehicles (AVs) in Catalonia are 

warranted in the future. 

Random Forest is essentially a collection of decision trees whose outcomes are aggregated 

based on voting (A. Zermane et al., 2023). Rezapour et al. (2020) suggested using it instead of 

a decision tree model. To identify significant determinants of road crash severity, this work 

adopts a similar strategy to that of Rezapour et al. (2020), using a combination of binary 

logistic regression and random forest (Rezapour et al., 2020). This study’s originality lies in 

using two different predictive models (statistics and machine learning). Recently several 

studies oriented to deep learning techniques to predict traffic flow to reduce potential road 

accidents (Hu et al., 2022; Kashyap et al., 2022). 

The literature review presents several models and methods to predict traffic accident severity. 

The choice of model depends on the available data and the specific context of the study. 

2 Problem Statement and Contribution 

Efforts to mitigate the occurrence of road accidents and their consequences have traditionally 

focused on improving infrastructure, enhancing vehicle safety, and enforcing traffic 
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regulations. However, recent advancements in data collection and analysis have opened up 

new opportunities to predict and prevent accidents. 

The focus of this research is to analyze the severity of traffic accidents using two datasets. 

The goal is to identify the root causes of traffic collisions in Catalonia and Toronto and also to 

determine the most effective Machine Learning model in this context. Understanding the 

patterns and trends behind accident severity is crucial in determining the complex variables 

that contribute to the frequency of collisions of varying severity levels and developing 

appropriate corrective activities. 

In particular, the application of machine learning algorithms to road accident forecasting has 

gained prominence due to its potential to provide timely and data-driven insights for traffic 

management and safety measures. This research article delves into the domain of road 

accident prediction using machine learning techniques. It seeks to harness the power of data-

driven models to enhance road safety and reduce accident-related fatalities and injuries. In 

addition, there is a significant interest in the impact of emerging technologies, such as 

autonomous vehicles, on traffic safety. Further research in these areas can lead to 

improvements in traffic safety and the development of more effective intervention strategies. 

3 Materials 

This research is based on a thorough examination of existing literature. Previous studies on 

road accident prediction and machine learning applications in traffic safety are categorized 

and analyzed. This research aims to provide actionable insights for road safety and accident 

prevention by leveraging the capabilities of machine learning. The findings of this study 

contribute to the ongoing efforts to reduce the incidence of road accidents and their associated 

social and economic costs. In the subsequent sections of this article, we delve into the specific 

details of utilized data on road accidents. 

The first dataset is used for road accident classification. It is taken from Toronto Police 

Service open data for Fatal Collisions published for public reuse available from (Toronto 

Police Service, 2022). This dataset is a subset of the Killed and Seriously Injured (KSI) data 

collected from 2006-2022. This part of the research presented here underscores the potential 

of machine learning algorithms as valuable tools in road accident prediction and prevention. 

For the regression task, the second dataset used in this study contains 16,773 records with 54 

attributes. The dataset was collected from 2010 to 2018 and reflects traffic incident data in 

Catalonia (Li et al., 2018). The attributes represent various details regarding the traffic 

incidents and their circumstances, such as the year, area, world name, severity of injuries, the 

number of units involved, and other specifics related to the environment and conditions at the 

time of the incidents. The dataset also includes various qualitative and quantitative features, 

such as type of day, type of accident, and weather conditions, providing a comprehensive 

view of each incident’s circumstances. The dataset is balanced in urban and road areas, with 

around 54% of incidents occurring in urban areas and the remaining 46% on the road. Recent 

reports about fatal accidents are published by (Catalan Traffic Service, 2024). The latest 

Accident of Mortals 2014-2024 in Catalonia dataset is available from (Augé & Navarro, 

2022). 

The study methodology, feature engineering approaches, model development, and extensive 

discussions on the implications of our findings are based on these rich and diverse datasets 

that allow the application of various machine-learning models to predict the severity of road 

crashes. They provide a solid basis for examining the many factors that can contribute to the 

severity of a crash, and the models’ performance can be evaluated and compared based on 

their accuracy in predicting the crash severity. 
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4 Methods 

In order to conduct this study, we began by gathering crucial data related to fatal accidents. 

As a result, the study relies on a range of data sources including accident reports, 

meteorological data, traffic information, and road infrastructure data. The process of 

collecting the data involved addressing various challenges related to data quality and 

availability. We used rigorous preprocessing techniques to ensure that the data used in model 

development is reliable and relevant. This research employs a suite of Machine Learning 

algorithms for the prediction of the class of road accident injuries, including Decision Tree, 

Random Forest, MLP Classifier, Logistic Regression, Gradient Boosting, Ada Boost, and 

Gaussian Naive Bayes, to classify road accidents. The predictive models used for the 

regression task include Linear Regression, Decision Tree, Random Forest, Ridge Regression, 

Lasso Regression, ElasticNet Regression, Gradient Boosting, Support Vector Regressor, K-

Nearest Neighbors, XGBoost, LightGBM. 

Different techniques offer unique advantages and are chosen based on the specific 

characteristics and objectives of the research tasks. The Decision Tree is a tree-like model: 

each internal node represents a feature or attribute, each branch represents a decision rule, and 

each leaf node represents an outcome or class label. It is used for both classification and 

regression tasks, providing interpretability and the ability to handle non-linear relationships in 

the data. Random Forest is an ensemble learning method that builds multiple decision trees 

during training and outputs the mode (classification) or mean prediction (regression) of the 

individual trees. It enhances accuracy and reduces overfitting by averaging the predictions of 

different trees. Ada Boost (Adaptive Boosting) is another ensemble method that combines 

multiple weak learners (typically shallow decision trees) to create a strong learner. It adjusts 

the weights of incorrectly predicted instances to focus on difficult cases, thereby improving 

overall performance. 

The Multilayer Perceptron (MLP) Classifier is a type of feedforward neural network with 

multiple layers of nodes (neurons) capable of learning non-linear relationships in data. It is 

effective for classification tasks, especially when dealing with complex patterns. Logistic 

Regression is a linear model used for binary classification tasks. It models the probability of a 

binary outcome based on input variables, providing interpretable results and insights into the 

influence of predictors on the target. Gradient Boosting is an ensemble learning technique that 

builds models sequentially, with each new model correcting errors made by the previous ones. 

It is particularly effective in improving predictive accuracy and handling complex interactions 

between variables. Naive Bayes is a probabilistic classifier based on Bayes' theorem, 

assuming independence between features. Gaussian Naive Bayes is specifically designed for 

continuous features, making it suitable for tasks where the distribution of features can be 

assumed to be Gaussian. 

Linear Regression models the relationship between dependent and independent variables by 

fitting a linear equation to the observed data. It provides insights into the relationship between 

variables and is straightforward to interpret. Ridge Regression is a regularized version of 

linear regression that adds a penalty term to the loss function, preventing overfitting by 

penalizing large coefficients. Lasso Regression, similar to Ridge, adds a penalty term but uses 

the absolute value of coefficients. It can perform feature selection by driving some 

coefficients to zero. ElasticNet combines the penalties of Ridge and Lasso regression, 

providing a balance between the two approaches. Support Vector Regressor (SVR) is a 

variant of Support Vector Machines (SVM) used for regression tasks. It finds a hyperplane 

that best fits the data, with a margin of tolerance (epsilon) within which no penalties are 

associated. However, K-Nearest Neighbors (KNN) is a non-parametric method used for both 

classification and regression. It predicts the output based on the majority class or mean of the 
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k-nearest neighbors in the feature space. XGBoost (Extreme Gradient Boosting) is an 

optimized implementation of gradient boosting that provides high performance and efficiency, 

often used for structured and tabular data. LightGBM (Light Gradient Boosting Machine) is 

another gradient boosting framework optimized for speed and memory efficiency, capable of 

handling large datasets with high-dimensional features. 

In order to assess and confirm the effectiveness of each Machine Learning algorithm, it is 

important to establish a basic understanding of the evaluation metrics used to assess the 

predictive models. Thus, this study utilized various metrics such as accuracy, precision, recall, 

and F1-score. Precision quantifies the accuracy of positive predictions, highlighting the ratio 

of true positive predictions to the total number of positive predictions. Recall assesses the 

model’s ability to identify all actual positive cases, expressed as the ratio of true positives to 

the total actual positive cases. F1-score is the harmonic mean of precision and recall, offering 

a balanced assessment of a model’s predictive power, particularly useful when dealing with 

imbalanced datasets. 

However, for the regression task, we utilized the Mean Squared Error (MSE), Mean Squared 

Logarithmic Error (MSLE), and Explained Variance Score. The goal in any machine learning 

task is typically to minimize the error (lower MSE and MSLE values are better) and maximize 

the amount of variance explained by the model (higher Explained Variance Score is better). 

Accuracy measures the overall correctness of predictions, expressing the ratio of correctly 

predicted accidents to the total predictions made. 

For each target variable, we develop a separate model that undergoes training and evaluation. 

The script incorporates a pipeline comprising the preprocessing steps and the model itself. 

The training data is used to train the model, and then we make predictions on the test data. 

However, some predictions may not make sense in the context of the problem, such as 

negative predictions for the number of victims, fatalities, etc. Therefore, we replace any 

negative predictions with 0. The performance of each model is evaluated using the Mean 

Squared Error (MSE), Mean Squared Logarithmic Error (MSLE), and Explained Variance 

Score (EVS). If the calculation of the MSLE results in an error (which can happen if the 

predictions include negative values), the MSLE is set to None for that model. 

The second part of regression models aims to construct and evaluate an ensemble model for 

predicting the severity of road crashes. The script utilizes various regression models, 

combining them into a Stacking Regressor, which uses the concept of stacking (also known as 

stacked generalization) to ensemble multiple regression models. The severity of road crashes 

is measured by four metrics: the number of victims, fatalities, serious injuries, and minor 

injuries. The Stacking Regressor is a form of ensemble learning where the base models are 

fitted based on the complete training set; then, the final estimator is fitted on the outputs of the 

base models to form new predictions. 

The script trains and evaluates the Stacking Regressor for each target variable. The Stacking 

Regressor uses the base models to make predictions, and these predictions are then used as 

input to the final estimator to make the final prediction. Any negative predictions (which 

would be nonsensical in this context) are replaced with 0. The performance of the Stacking 

Regressor is evaluated using the Mean Squared Error (MSE), Mean Squared Logarithmic 

Error (MSLE), and Explained Variance Score (EVS). If the calculation of the MSLE results in 

an error (which can happen if the predictions include negative values), the MSLE is set to 

None. Each algorithm performed in this article is selected based on its suitability for handling 

the unique characteristics of accident prediction data. The article details the model 

development process, encompassing feature engineering, hyperparameter tuning, and model 

selection. 
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5 Results 

Several machine learning models were used to perform a regression task to predict the victims 

of road crashes. The performance of each of these models was evaluated using different 

metrics, which provided a unique perspective on the model’s performance. In this section, we 

present the results of our predictive modeling experiments and provide a comprehensive 

discussion of the findings applied to the two datasets. 

5.1 Classification Models (Toronto Dataset) 

The Toronto dataset (Toronto Police Service, 2022) has already been introduced in Chapter 3. 

The data contains two classes, including Fatal, with 2297 cases (13.6%), and Non-fatal, with 

14561 cases (86.4%). Several factors are selected for road accident prediction, including 

object ID, year, date, time, hour, road class, district, Location Coordinate (loccoord), 

Collision location (accloc), Light condition (traffctl), visibility, light, Classification of 

accident (acclass), Involvement type (invtype), injury, and vehicle type (vehtype). A 

descriptive analysis of the Toronto dataset of road accidents is illustrated in Table 1. The less 

than 0 P-value indicates the influence of all factors associated with road accidents, while the 

X2 illustrates the dominance of some factors including Involvement Type and Environment 

Condition. 

Tab. 1: Toronto dataset descriptive analysis 

Factor Values Frequency (%) 

Accident class 

Fatal 
Non-

fatal 
X2 

P-

value 

Road class 

NA 497 2.9 80 417 

32.584 0.000* 

Collector 929 5.5 140 789 

Expressway 52 0.3 5 47 

Expressway Ramp 4 0 0 4 

Laneway 10 0.1 6 4 

Local 761 4.5 96 665 

Major Arterial 11974 71 1645 10329 

Major Arterial Ramp 1 0 0 1 

Minor Arterial 2598 15.4 325 2273 

Other 25 0.1 0 25 

Pending 7 0 0 7 

Total 16858 100 2297 14561 

Dıstrıct 

NA 141 0.8 2 139 

140.837 0.000* 

Etobicoke York 3884 23 529 3355 

North York 3343 19.8 512 2831 

Scarborough 3796 22.5 674 3122 

Toronto and East York 5617 33.3 577 5040 

Toronto East York 77 0.5 3 74 

Total 16858 100 2297 14561 
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Factor Values Frequency (%) 

Accident class 

Fatal 
Non-

fatal 
X2 

P-

value 

Location 

Coordinate 

NA 105 0.6 0 105 

39.139 0.000* 

Entrance Ramp 

Westbound 
2 0 0 2 

Exit Ramp Southbound 3 0 0 3 

Exit Ramp Westbound 5 0 1 4 

Intersection 11141 66.1 1467 9674 

Mid-Block 5596 33.2 827 4769 

Mid-Block (Abnormal) 4 0 0 4 

Park, Private Property, 

Public Lane 
2 0 2 0 

Total 16858 100 2297 14561 

Collision 

Location 

NA 5450 32.3 795 4655 

79.312 0.000* 

At Intersection 8060 47.8 985 7075 

At/Near Private Drive 318 1.9 11 307 

Intersection Related 1019 6 153 866 

Laneway 13 0.1 2 11 

Non-Intersection 1966 11.7 346 1620 

Overpass or Bridge 12 0.1 3 9 

Private Driveway 13 0.1 0 13 

Trail 1 0 0 1 

Underpass or Tunnel 6 0 2 4 

Total 16858 100 2297 14561 

Traffic 

Control Type  

NA 29 0.2 0 29 

72.694 0.000* 

No Control 8090 48 1245 6845 

Pedestrian Crossover 195 1.2 28 167 

Police Control 2 0 0 2 

School Guard 2 0 0 2 

Stop Sign 1295 7.7 156 1139 

Streetcar (Stop for) 16 0.1 0 16 

Traffic Controller 104 0.6 0 104 

Traffic Gate 5 0 3 2 

Traffic Signal 7104 42.1 865 6239 

Yield Sign 16 0.1 0 16 

Total 16858 100 2297 14561 

Environment 

Condition  

NA 18 0.1 18 0 

180.118 0.000* 

Clear 14474 85.9 1976 12498 

Drifting Snow 19 0.1 0 19 

Fog, Mist, Smoke, Dust 46 0.3 7 39 

Freezing Rain 43 0.3 2 41 

Other 99 0.6 38 61 

Rain 1819 10.8 224 1595 

Snow 332 2 32 300 

Strong wind 8 0 0 8 

Total 16858 100 2297 14561 
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Factor Values Frequency (%) 

Accident class 

Fatal 
Non-

fatal 
X2 

P-

value 

Light 

Condition 

Dark 3582 21.2 603 2979 

74.704 0.000* 

Dark, artificial 2852 16.9 398 2454 

Dawn 104 0.6 17 87 

Dawn, artificial 93 0.6 20 73 

Daylight 9683 57.4 1181 8502 

Daylight, artificial 128 0.8 14 114 

Dusk 226 1.3 41 185 

Dusk, artificial 184 1.1 19 165 

Other 6 0 4 2 

Total 16858 100 2297 14561 

Involvement 

Type 

NA 12 0.1 7 5 

187.664 0.000* 

Cyclist 726 4.3 41 685 

Cyclist Passenger 2 0 0 2 

Driver 7616 45.2 928 6688 

Driver - Not Hit 17 0.1 3 14 

In-Line Skater 5 0 0 5 

Moped Driver 27 0.2 0 27 

Motorcycle Driver 607 3.6 76 531 

Motorcycle Passenger 32 0.2 2 30 

Other 174 1 40 134 

Other Property Owner 257 1.5 39 218 

Passenger 2543 15.1 336 2207 

Pedestrian 2871 17 512 2359 

Pedestrian - Not Hit 1 0 0 1 

Trailer Owner 2 0 0 2 

Truck Driver 316 1.9 83 233 

Vehicle Owner 1636 9.7 227 1409 

Wheelchair 13 0.1 2 11 

Witness 1 0 1 0 

Total 16858 100 2297 14561 

Severity of 

Injury 

NA 1612 9.6 275 1337 

5944.84 0.000* 

Fatal 821 4.9 821 0 

Major 5667 33.6 98 5569 

Minimal 1042 6.2 86 956 

Minor 1311 7.8 218 1093 

None 6405 38 799 5606 

Total 16858 100 2297 14561 

Classification 

of Accident 

Fatal 2297 13.6   

  Non-Fatal Injury 14561 86.4   

Total 16858 100   
Source: Own processing of dataset (Toronto Police Service, 2022) 

Over the past decade, Toronto has undergone significant changes in its urban landscape and 

transportation infrastructure, inevitably influencing the dynamics of road safety resulting in 
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a decreased number of accidents by 2020. The analysis of accidents from 2006 to 2020 

unveils crucial insights into the city’s evolving traffic patterns and highlights areas of 

concern. 

From improvements in public transportation to changes in commuting behaviors, 

understanding the trends in accidents is essential. It not only reflects the city’s growth but also 

helps policymakers and authorities implement targeted interventions aimed at promoting 

a safer and more resilient urban road network. Figure 2 shows a graph illustrating the number 

of accidents over the years from 2006 to 2020. 

 
Source: Own processing of dataset (Toronto Police Service, 2022) 

Fig. 2: Accidents over the years 2006-2020 

Based on the vehicle type, accidents over the years demonstrate a huge number of 

automobiles and station wagons, especially from 2008 to 2016. Motorcycles and bicycles are 

also associated with road accidents identifying augmented values over the years. Figure 3 

illustrates a box plot of accidents based on vehicle types from 2006 to 2020. 

In our study, we used specific Machine Learning algorithms chosen for their ability to handle 

the complexity of road accident prediction. To determine the best combination of 

hyperparameters for all classifiers, we employed cross-validation along with grid search. This 

method allows us to optimize model performance by systematically exploring a defined grid 

of hyperparameter values and assessing each combination using cross-validation. 

When comparing different models for a classification task, choosing the right evaluation 

metric is crucial for accurately assessing the model’s performance. While accuracy is 

commonly used, especially in balanced datasets, it can be misleading in the context of 

imbalanced datasets. In situations where one class significantly outweighs the others in terms 

of frequency, a model could achieve high accuracy simply by predicting the majority class for 

all instances. However, this approach does not reflect the model’s ability to correctly identify 

the minority class, which is often the more critical task in real-world applications. 
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Source: Own processing of dataset (Toronto Police Service, 2022) 

Fig. 3: Accidents based on vehicle type over the years 2006-2020 

To address this limitation, the F1 score is proposed as a more appropriate metric for 

evaluating model performance in imbalanced datasets. The F1 score considers both precision 

and recall, providing a balanced measure of a model’s ability to identify positive instances 

(minority class) while minimizing false positives. Specifically, precision measures the 

proportion of correctly predicted positive instances out of all predicted positive instances, 

whereas recall measures the proportion of correctly predicted positive instances out of all 

actual positive instances. 

When evaluating a model, using the F1 score as the main metric allows for a better 

assessment of the model’s effectiveness in capturing true positive instances, especially in 

imbalanced datasets where identifying the minority class accurately is crucial. This approach 

ensures a more thorough evaluation of model performance, providing more meaningful 

insights for practical applications. 

We summarized the performance of these algorithms below. Decision Trees are known for 

their simplicity and interpretability. In our experiments, Decision Trees (max_depth = 5, 

min_samples_split = 2, min_samples_leaf = 1, criterion = ‘entropy’) achieved an accuracy of 

90.59% with an F1-score of 0.64 (class 0) and 0.95 (class 1), respectively. These results 

demonstrate the effectiveness of Decision Trees in capturing simple decision boundaries 

within the data. Random Forest is another technique among ensemble learning techniques. 

In our experiments, the Random Forest model (n_estimators = 150, max_depth = 20, 

min_samples_split = 2, min_samples_leaf = 1, max_features = ‘sqrt’) yielded the highest 

accuracy with 94.42% and F1-score of 0.72 (class 0) and 0.97 (class 1), respectively. These 

results suggest that Random Forests are more suitable, contributing to their predictive power. 

GBoost (Gradient Boosting) algorithm (n_estimators = 100, learning_rate = 0.1, 

max_depth = 5, subsample = 0.8), is renowned for its high predictive accuracy. In our 

experiments, GBoost and Ada Boost (n_estimators = 50, learning_rate = 1.0) demonstrated an 

accuracy of 92% and F1-score of 0.55 (class 0) and 0.96 (class 1) respectively. These results 

establish GBoost as a robust choice for accident prediction capable of handling complex non-

linear relationships in the data. However, MLP (hidden_layer_sizes = (25, 10), 

activation = ‘tanh’, alpha = 0.0001, solver = ‘adam’), Logistic Regression (max_iter = 100) 
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and Gaussian Naïve Bayes models achieved the lowest accuracies of 87.13%, 87.50% 

86.12%, and F1-scores about 0.05 (class 0) and 0.93 (class 1) respectively. Results are 

collected in Table 2. 

Tab. 2: Classification models’ evaluation 

Model Accuracy Class precision recall F1-score 

Decision Tree 90.59% 0 0.62 0.66 0.64 

1 0.95 0.94 0.95 

Random Forest 94.42% 0 0.97 0.57 0.72 

1 0.94 1.00 0.97 

MLP Classifier 87.35% 0 0.52 0.02 0.03 

1 0.87 1.00 0.93 

Logistic Regression 87.50% 0 0.00 0.00 0.00 

1 0.88 1.00 0.93 

Gradient Boosting 92.17% 0 0.99 0.38 0.55 

1 0.92 1.00 0.96 

Ada Boost 92.01% 0 0.96 0.38 0.54 

1 0.92 1.00 0.96 

Gaussian Naive Bayes 86.12% 0 0.16 0.03 0.05 

1 0.88 0.98 0.93 
Source: Own processing of dataset (Toronto Police Service, 2022) 

Another evaluation metric is utilized to compare and select the best model, which is the 

Receiver Operating Characteristic (ROC) curve. It is a graphical representation of a 

classification model’s performance at various thresholds, as illustrated in Figure 4. It shows 

the trade-off between the true positive rate (sensitivity) and the false positive rate (1 – 

specificity) as you change the classification threshold. 

 
Source: Own processing of dataset (Toronto Police Service, 2022) 

Fig. 4: Receiver operating characteristic curve of the predictive models 
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5.2 Regression Models (Catalonia Dataset) 

The region of Catalonia has witnessed a high number of road traffic accidents that have 

resulted in serious consequences for both drivers and pedestrians. Despite numerous 

countermeasures, such as infrastructure enhancement, increased law enforcement, and public 

awareness campaigns, road accidents persist as a significant public health concern. Globally, 

road traffic injuries are a major cause of premature mortality and disability, affecting millions 

yearly (Rubio-Romero et al., 2013). 

In this study, several machine learning models were used to perform a regression task to 

predict the victims of road crashes. The performance of each of these models was evaluated 

using three metrics: Mean Squared Error (MSE), Mean Squared Logarithmic Error (MSLE), 

and Explained Variance Score. The goal in any machine learning task is typically to minimize 

the error (lower MSE and MSLE values are better) and maximize the amount of variance 

explained by the model (higher Explained Variance Score is better). 

5.2.1 Victims 

Linear Regression model recorded MSE of 1.0365, MSLE of 0.0836, and Explained Variance 

Score of 0.2424. As the first results, they act as a baseline for us to compare the other models. 

Decision Tree’s performance was worse than the Linear Regression model across all metrics, 

indicating that it was not a suitable model for this particular task. Random Forest performed 

better than Linear Regression and Decision Tree, with an MSE of 0.9531, MSLE of 0.0668, 

and an Explained Variance Score of 0.3044. This suggests that an ensemble of decision trees 

(which is what Random Forest is) is more suited to this task than a single decision tree. The 

performance of the Ridge Regression model is virtually identical to the Linear Regression 

model, suggesting that adding L2 regularization (which Ridge Regression does) did not 

significantly improve performance. Lasso Regression and ElasticNet Regression models 

apply a form of regularization to the regression model. In these cases, they perform worse 

than the baseline Linear Regression model, suggesting that the form of regularization they 

apply (L1 and a combination of L1 and L2) does not benefit this task. The gradient Boosting 

model performed the best across all the models so far, with an MSE of 0.8740, MSLE of 

0.0598, and an Explained Variance Score of 0.3612. This is not surprising as Gradient 

Boosting is a powerful machine learning model that creates an ensemble of decision trees in a 

stage-wise fashion, often leading to good performance. Support Vector Regressor performed 

poorly, with high error metrics and a very low Explained Variance Score. Similarly, the K-

Nearest Neighbours model did not perform well on this dataset, with high error metrics and a 

negative Explained Variance Score, indicating the model was less effective than a simple 

average. The XGBoost model performed quite well and came in second place after Gradient 

Boosting. This is expected as both models are based on the same principles of boosting weak 

learners. The LightGBM model’s performance was comparable to that of Gradient Boosting 

and came in third. Although it is also a gradient-boosting model, it uses a histogram-based 

algorithm that can be faster and use less memory than other techniques. Considering the 

ensemble model, the MSE is 1.25, the MSLE is 0.073, and the EVS is 0.087. These results 

indicate that the model has a relatively high error rate and explains a small portion of the 

variance in the number of victims. This could be due to various reasons, such as a lack of 

relevant predictors, noise in the data, or a need for more complex modeling techniques. 

Based on these results, the Gradient Boosting model is the best-performing model for the 

regression task, followed closely by XGBoost and LightGBM. These models seem to capture 

the underlying structure of the dataset best and make the most accurate predictions of victims. 

Figure 5 aggregates the model’s MSE, MSLE, and EVS Comparison for victims. 
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Source: Own processing of dataset (Augé & Navarro, 2022) 

Fig. 5: Models MSE, MSLE, and EVS comparison for victims 

5.2.2 Fatalities 

For Linear Regression, MSE of 0.0299, MSLE of 0.0030, and Explained Variance Score of 

0.8187. As previously stated, we will utilize these outcomes as a reference point for 

comparison. The findings indicate that the Decision Tree model has a worse performance than 

the Linear Regression model in this instance. This suggests that a singular decision tree may 

be either too uncomplicated or overfitted for this particular task. The Random Forest model is 

slightly better than the Linear Regression model in terms of MSE and MSLE but slightly 

worse regarding the Explained Variance Score. This indicates that, as before, an ensemble of 

decision trees is more suitable for this task than a single decision tree. The performance of 

Ridge Regression is almost identical to that of the Linear Regression model, which suggests 

that L2 regularization did not significantly impact the model’s performance. Concerning 

Lasso Regression and ElasticNet Regression models, they have substantially higher MSE and 

MSLE scores and a drastically lower Explained Variance Score than the baseline. This 

suggests that L1 regularization (or a combination of L1 and L2 in the case of ElasticNet) is 

not beneficial for this task. Gradient Boosting has the best performance thus far, with an MSE 

of 0.0290, MSLE of 0.0029, and Explained Variance Score of 0.8238. This suggests that 

boosting algorithms, which build an ensemble of weak learners in a stage-wise fashion, are 

well suited to this task. The Support Vector Regressor performed relatively poorly, with high 

error scores and a very low Explained Variance Score. The K-Nearest Neighbors model has 

performed the worst, with the highest error scores and a negative Explained Variance Score. 

This indicates that it performed worse than a model that predicted the mean of the target 

variable. The performance of the XGBoost model is good, but not as good as Gradient 

Boosting. This suggests that, although it is a powerful model, it is not the best choice for this 

particular task. The LightGBM model has the best performance overall, with an MSE of 

0.0285, MSLE of 0.0029, and an Explained Variance Score of 0.8266. This model uses a 

histogram-based algorithm, which can be faster and use less memory than traditional boosting 

techniques. In predicting fatalities using ensemble models, the MSE is 0.028, the MSLE is 

0.0027, and the EVS is 0.831. These results suggest that the model performs significantly 

better at predicting fatalities than victims. The EVS is quite high, indicating that the model 

explains a large portion of the variance in fatalities. 

To summarize, the LightGBM model appears to be the best choice for predicting fatalities, 

followed closely by the Gradient Boosting model and the Random Forest model. The Linear 

Regression model, which is a simpler model, performs quite well. Figure 6 aggregates the 

model’s MSE, MSLE, and EVS Comparison for fatalities. 
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Source: Own processing of dataset (Augé & Navarro, 2022) 

Fig. 6: Models MSE, MSLE, and EVS comparison for fatalities 

5.2.3 Serious Injuries 

Linear Regression model MSE, MSLE, and Explained Variance Score for the Linear 

Regression model are 0.1885, 0.0327, and 0.3025, respectively. As before, we will use these 

values as the baseline for comparison. The Decision Tree model performed worse than the 

Linear Regression model, with higher MSE and MSLE and a negative Explained Variance 

Score. This suggests that, as before, a single decision tree may be overfitting or not complex 

enough to capture the relationships in the data. The Random Forest model performed better 

than the Linear Regression model in terms of all three metrics, suggesting that, as with the 

previous tasks, an ensemble of decision trees is more suitable than a single decision tree. The 

performance of the Ridge Regression model is nearly identical to that of the Linear 

Regression model. This indicates that adding L2 regularization did not significantly improve 

the model’s performance. Lasso and ElasticNet Regression models performed significantly 

worse than the Linear Regression models. This suggests that L1 regularization (or a 

combination of L1 and L2 for ElasticNet) is not beneficial for this task. Gradient Boosting: 

The Gradient Boosting model achieved the best performance so far, with an MSE of 0.1722, 

MSLE of 0.0291, and Explained Variance Score of 0.3628. This indicates that boosting 

algorithms, which iteratively train models on the residuals of previous models, are well suited 

to this task. The Support Vector Regressor performed relatively poorly, with high error scores 

and a very low Explained Variance Score. According to the results, the K-Nearest Neighbors 

model performed worst, indicating that it is not an appropriate model for this task. It had the 

highest error scores and a negative Explained Variance Score. On the other hand, the 

XGBoost model performed better than the baseline Linear Regression model but worse than 

the Gradient Boosting model. This suggests that it is a reasonable choice for this task, 

although there may be better models available. The LightGBM model performed well, with 

MSE of 0.1777, MSLE of 0.0305, and Explained Variance Score of 0.3425. This shows that it 

is a competitive choice for this task, although it did not outperform the Gradient Boosting 

model. When predicting serious injuries using ensemble models, the results obtained are: the 

MSE is 0.184, the MSLE is 0.031, and the EVS is 0.318. These results indicate that the 

model’s performance in predicting seriously injured cases is moderate. The relatively low 

EVS suggests that there is still room for improvement. 

In conclusion, the Gradient Boosting model is the best choice for predicting serious injuries, 

followed by the LightGBM and Random Forest models. The Linear Regression model also 

performed decently, suggesting it could be used as a simpler alternative. Figure 7 aggregates 

the model’s MSE, MSLE, and EVS Comparison for serious injuries. 
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Source: Own processing of dataset (Augé & Navarro, 2022) 

Fig. 7: Models MSE, MSLE, and EVS comparison for serious injuries 

5.2.4 Minor Injuries 

Linear Regression MSE, MSLE, and Explained Variance Scores for the Linear Regression 

model are 0.8035, 0.1671, and 0.1739, respectively. We use these metrics as the baseline for 

comparison. The Decision Tree model has significantly worse metrics than the Linear 

Regression model. The Explained Variance Score is even negative, which means the Decision 

Tree model is a poor choice for this task. According to the metrics, the Random Forest model 

shows slightly worse performance than the Linear Regression model. It is marginally better 

than the Decision Tree, suggesting that using multiple trees helps to prevent overfitting. The 

performance of the Ridge Regression model is nearly identical to the Linear Regression 

model, implying that L2 regularization does not significantly improve the model’s 

performance for this task. Lasso Regression and ElasticNet Regression models perform worse 

than the Linear Regression model, suggesting that L1 regularization (or a combination of L1 

and L2 for ElasticNet) does not benefit in this scenario. The gradient Boosting model delivers 

the best performance, with an MSE of 0.7532, MSLE of 0.1389, and Explained Variance 

Score of 0.2253. This suggests that a boosting model, which iteratively corrects the mistakes 

of previous models, is well suited for this prediction task. The Support Vector Regressor 

performs relatively poorly, with high error scores and an almost zero Explained Variance 

Score. The K-Nearest Neighbors model also performs poorly, with the second highest error 

scores and a negative Explained Variance Score, indicating that it is unsuitable for this task. 

The XGBoost model performs worse than the Gradient Boosting model but better than the 

baseline Linear Regression model. This model may be a reasonable choice, but not the best. 

The LightGBM model performs slightly worse than the Gradient Boosting model with an 

MSE of 0.7556, MSLE of 0.1380, and Explained Variance Score of 0.2229. It is still a 

competitive choice for this task, even though it did not surpass the Gradient Boosting model. 

The results obtained from predicting minor injuries using ensemble models include the MSE, 

which is 0.746, MSLE, which is 0.138, and the EVS, which is 0.233. The model’s 

performance in predicting minor injuries is relatively weak, with a higher error rate and lower 

explained variance compared to other targets. 

In conclusion, the Gradient Boosting model is the best choice for predicting minor injuries, 

followed by the LightGBM and Random Forest models. The Linear Regression model also 

performed decently, suggesting it could be a simpler alternative. Figure 8 aggregates the 

model’s MSE, MSLE, and EVS Comparison for minor injuries. 
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Source: Own processing of dataset (Augé & Navarro, 2022) 

Fig. 8: Models MSE, MSLE, and EVS comparison for minor injuries 

These results suggest that the Stacking Regressor model performs differently depending on 

the target variable. It performs well in predicting fatalities but has more difficulty predicting 

the number of victims, seriously injured cases, and minor injuries. This could be due to 

differences in the distributions of these variables or differences in the underlying factors that 

influence them. It may be beneficial to explore other modeling techniques or feature 

engineering strategies to improve performance on harder-to-predict targets. Additionally, 

further model tuning and alternative approaches may be necessary based on these results. 

Table 3 aggregates Linear Regression, Gradient Boosting, and LightGBM models of MSE, 

MSLE, and EVS comparison for all categories. 

Tab. 3: Linear Regression, Gradient Boosting, and LightGBM models MSE, MSLE, and EVS 

comparison for all categories 

 
Linear Regression Gradient Boosting LightGBM 

MSE EVS MSLE MSE EVS MSLE MSE EVS MSLE 

Victims 1.0365 0.2424 0.0836 0.8740 0.3612 0.0598 0.900 0.380 0.060 

Fatalities 0.0299 0.8187 0.003 0.029 0.8238 0.0029 0.0285 0.8266 0.0029 

Serious 

Injuries 
0.1885  0.3025 0.0327 0.1722 0.3628 0.0291 0.1777 0.3425 0.0305 

Minor 

Injuries 
0.8035 0.1739 0.1671 0.7532 0.2253 0.1389 0.7556 0.2229 0.1380 

Source: Own processing of dataset (Augé & Navarro, 2022) 

Considering the significant differences in outcomes among the various target variables, it 

might be advantageous to create individualized models for each target variable instead of 

using a universal model. This technique could enable each model to better capture the distinct 

patterns and trends associated with each target variable. 

6 Discussion 

After reviewing a body of literature, it is clear that road crashes are still a major public safety 

issue, despite various efforts to solve them. The studies we reviewed used a variety of 

methodologies, from statistical to machine learning models, which reflects the complex and 

multifaceted nature of the problem. 

The application of Artificial Neural Networks (ANNs) in predicting crash severity outcomes, 

as demonstrated in the studies by Delen et al. (2006) and Moghaddam et al. (2011), illustrates 

the potential of machine learning in this context. These studies highlight the complex, non-

linear relationships between various crash-related parameters and the severity of injuries 

sustained (Delen et al., 2006; Moghaddam et al., 2011). Other studies have utilized different 
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machine learning models, each with strengths and weaknesses. Alkheder et al. (2017) 

demonstrated that an ANN model could predict accident severity with reasonable accuracy, 

while Kunt et al. (2012) used a multi-layer perceptron (MLP) structure in a genetic algorithm 

to predict automobile accidents (Alkheder et al., 2017; Kunt et al., 2011). On the other hand, 

Hashmienejad and Hasheminejad (2017) proposed a novel rule-based approach that 

outperformed conventional classification techniques, such as ANN, SVM, and standard 

decision trees (Hashmienejad & Hasheminejad, 2017). In the recent study of Bridgelall and 

Tolliver, machine learning and natural language processing are utilized for railroad accident 

analysis. They found that management decisions, planning, and policies to minimize the risk 

of human-caused accidents are reasons for accidents (Bridgelall & Tolliver, 2024). 

Statistical models, such as binary logistic regression, have also been employed to analyze the 

association between crash severity and factors like driver attributes, environmental conditions, 

and highway geometries (Moriano et al., 2024). However, these models may have limitations, 

particularly when dealing with multi-class outcomes or when the relationships between 

variables are non-linear. In contrast to the more traditional approaches, this study seeks to 

leverage various machine learning models. Notably, the authors include the Random Forest 

(RF) model, which has been employed successfully in multiple domains and has shown 

promising results (Gatera et al., 2023; Kang & Ryu, 2019; Yokoyama & Yamaguchi, 2020). 

By doing so, the authors aim to extend the existing body of knowledge and provide a more 

comprehensive and nuanced understanding of road crash severity predictors. 

The study provides valuable insights into the performance of different machine learning 

algorithms in predicting road accidents based on two datasets. The analysis highlights several 

noteworthy observations and considerations. Each algorithm exhibits unique strengths and 

weaknesses. Decision Trees offer interpretability but may struggle with complex 

relationships, while Random Forests excel in capturing temporal patterns but may require 

substantial data. GBoost demonstrates high accuracy but demands careful tuning. The choice 

of the algorithm should align with the specific objectives and constraints of road safety 

applications. 

Understanding feature importance is crucial for road accident prevention efforts. Feature 

importance analysis reveals which attributes (e.g., weather conditions, road type) have the 

most significant impact on accident prediction. This knowledge can inform targeted safety 

interventions and policy decisions. Integrating sentiment analysis applications used recently in 

deep learning could reduce road accidents. 

The ability of these models to generalize to different geographic regions and periods is of 

paramount importance. The models developed in this research could potentially be integrated 

into real-time traffic management systems, allowing for timely accident prediction and 

prevention. However, this requires addressing challenges related to data latency and model 

deployment. The insights gained from this study have substantial policy implications. 

Accurate accident prediction can inform proactive safety measures, resource allocation, and 

emergency response planning, ultimately contributing to reduced accident rates and safer road 

networks. 

Implementing targeted recommendations can significantly diminish the risk of accidents. To 

achieve this, people must adhere to traffic rules, consistently obeying speed limits, stop signs, 

traffic lights, and other road signs. Maintain lane discipline, avoiding unauthorized 

overtaking. Eliminate distractions by refraining from using mobile phones, eating, or 

engaging in any distracting activities while driving. Never operate a vehicle under the 

influence of alcohol, drugs, or impairing substances. Ensure a safe following distance, 

allowing sufficient reaction time in case of sudden stops. Employ seatbelts and child safety 
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seats for all passengers. Exercise vigilance for pedestrians at crosswalks and intersections, 

yielding the right of way. Watch out for cyclists and motorcyclists, providing ample space on 

the road. Always use turn signals to communicate intentions. Regularly service and maintain 

the vehicle to ensure optimal working conditions. Adjust driving behavior during adverse 

weather conditions, reducing speed and increasing the following distance. Manage fatigue 

effectively, avoiding excessive tiredness, which impairs reaction time. People must keep calm 

and eschew aggressive behaviors like road rage. Exercise caution in school zones, especially 

during pick-up and drop-off times. Plan routes to circumvent heavy traffic or construction 

zones. Keep an emergency kit in the vehicle stocked with essential items like a first-aid kit, 

flashlight, and basic tools, and report reckless or unsafe driving to local authorities. 

The article highlights the intricacy involved in predicting the severity of road crashes, which 

calls for a combined effort utilizing various methods and algorithms. Our study emphasizes 

the potential of machine learning algorithms in predicting road accidents. The results can 

guide the selection of suitable algorithms and features for improving road safety and 

preventing accidents. 

Conclusion 

This research emphasizes the potential of machine learning algorithms as valuable tools for 

predicting and preventing road accidents. The insights obtained from our experiments 

contribute to the ongoing efforts to reduce the incidence of road accidents and their associated 

social, economic, and human costs. As road safety remains a global priority, the intersection 

of machine learning and traffic safety offers a promising avenue for continued research and 

innovation. We hope that the findings presented here will inspire further exploration and 

collaboration in the pursuit of safer roads for everyone. 

In this research article, we have explored the application of machine learning algorithms for 

the predictive modeling of road accidents. Our primary objective was to enhance road safety 

and reduce accident-related fatalities and injuries. Our study has encompassed a 

comprehensive analysis of methodologies, data collection, feature engineering, model 

development, and extensive discussions on the implications of our findings. 

Through a meticulous evaluation of several distinct machine learning algorithms for 

classification tasks, including Decision Trees, Random Forests, GBoost, Logistic Regression, 

Ada boost, MLP, and Gaussian Naive Bayes, we have discovered that Decision Trees, while 

easy to understand, may find it difficult to capture complex relationships in accident data. On 

the other hand, Random Forests, which are good at resolving overfitting problems, have the 

ability to capture the dynamics of road accidents. Random Forests for classification problems, 

with their high predictive accuracy, prove to be a reliable option for accident prediction, 

particularly when dealing with complicated, non-linear data patterns. 

This study conducted a thorough evaluation of various regression models to predict the 

severity of road crashes. The models included several Machine Learning techniques, 

including single estimator models like Linear Regression and ensemble models like Gradient 

Boosting and LightGBM. The results indicated the superior performance of ensemble models, 

particularly Gradient Boosting and LightGBM, in predicting the severity of road crashes. 

However, the performance of the models varied across the different outcome variables. 

Although the ensemble models were successful in predicting fatalities, they were not as 

effective in predicting the number of victims, seriously injured cases, and minor injuries. This 

highlights the complexity of the prediction task and suggests that each outcome may have 

distinct patterns and trends that cannot be entirely captured by a single model. 
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It is important to note that this study has limitations, particularly when it comes to regression 

models. This is because the models were evaluated based on a limited set of metrics, and 

using different evaluation measures may lead to different results. Additionally, it is an 

ongoing challenge to evaluate the robustness and transferability of models in accident 

prediction research, which calls for further investigation. 

At the end of this article, several recommendations for road accident prevention are 

suggested. Future research should focus on addressing these limitations. This could involve 

testing the models considering additional evaluation metrics. Furthermore, developing 

specialized models for each target variable might better capture the unique patterns associated 

with each outcome. Lastly, exploring other machine learning techniques or feature 

engineering strategies might help improve model performance. Despite its limitations, this 

study offers valuable insights into the utility of machine learning models in predicting road 

crash severity based on two datasets and provides directions for future research in this area. 
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TECHNIKY STROJOVÉHO UČENÍ PRO PŘEDPOVÍDÁNÍ SMRTELNÝCH NEHOD 

Zajištění bezpečnosti veřejnosti na našich silnicích je nejvyšší prioritou a výskyt dopravních 

nehod představuje velký problém. Pokroky v oblasti strojového učení nám naštěstí umožňují 

využívat data k předvídání a prevenci takových nehod. Naše studie se zabývá vývojem 

a implementací technik strojového učení pro předpovídání dopravních nehod s využitím 

bohatých souborů dat z Katalánska a Toronta Fatal Collision. Náš komplexní výzkum 

ukazuje, že metody ansámblového učení překonávají ostatní modely ve většině predikčních 

úloh, zatímco Decision Tree (Rozhodovací strom) a K-NN vykazují slabý výkon. Naše 

zjištění navíc poukazují na složitost spojenou s předpovídáním různých aspektů nehod, 

protože stohovací regresor vykazuje variabilitu ve své výkonnosti napříč různými cílovými 

proměnnými. Naše studie poskytuje cenné poznatky, které mohou významně přispět 

k probíhajícímu úsilí o snížení nehod a jejich následků tím, že umožní přesnější předpovědi. 

MASCHINENGEBUNDENE LERNTECHNIKEN FÜR DIE VORHERSAGE TÖDLICHER 

UNFÄLLE 

Die Sicherstellung der Sicherheit der Öffentlichkeit auf unseren Straßen besitzt die höchste 

Priorität. Das Auftreten von Verkehrsunfällen stellt ein großes Problem dar. Die Fortschritte 

auf dem Gebiet des maschinengebundenen Lernens ermöglichen uns glücklicherweise die 

Nutzung von Daten zur Vorhersage und Prävention solcher Unfälle. Unsere Studie befasst 

sich mit der Entwicklung und der Implementierung der Technik des maschinengebundenen 

Lernens zur Vorhersage von Verkehrsunfällen unter Verwendung reichhaltiger Dateien aus 

Katalonien und der „Toronto Fatal Collision“. Unsere komplexe Untersuchung legt dar, dass 

die Methoden des Ensemble-Lernens die übrigen Modelle der in der Mehrheit 

Prädikationsaufgaben überholt haben, wohingegen der „Decision Tree“ (der entscheidende 

Baum) und das K-NN eine schwache Leistung aufweisen. Unsere Feststellungen verweisen 

darüber hinaus auf die mit der Vorhersage verschiedener Aspekte von Unfällen verbundene 

Kompliziertheit, da der Stapelregressor in seiner Leistungsfähigkeit quer durch die 

verschiedenen Zielwandlungen eine Variabilität aufweist. Unsere Studie zeitigt wertvolle 

Erkenntnisse, welche in bedeutender Weise zur im Verlauf befindlichen Bestrebung um die 

Senkung von Unfällen und deren Folgen beitragen, indem sie genauere Vorhersagen 

ermöglichen. 

TECHNIKI UCZENIA MASZYNOWEGO DO PRZEWIDYWANIA ŚMIERTELNYCH 

WYPADKÓW 

Zapewnienie bezpieczeństwa publicznego na naszych drogach jest najwyższym priorytetem, 

a występowanie wypadków drogowych jest poważnym problemem. Na szczęście postępy 

w uczeniu maszynowym pozwalają nam wykorzystywać dane do przewidywania takich 

wypadków i zapobiegania im. Nasze badanie skupia się na opracowaniu i wdrożeniu technik 

uczenia maszynowego do przewidywania wypadków drogowych przy wykorzystaniu 

bogatych zbiorów danych z Katalonii i Toronto Fatal Collision. Nasze kompleksowe badania 

pokazują, że metody grupowania jako technika uczenia maszynowego wyprzedzają inne 

modele w większości zadań predykcyjnych, podczas gdy Decision Tree (drzewo decyzyjne) 

i K-NN są słabo wydajne. Ponadto, nasze ustalenia wskazują na złożoność związaną 

z przewidywaniem różnych aspektów wypadków, ponieważ układanie w stosy ma różną 

wydajność przy różnych zmiennych docelowych. Nasze badania dostarczają cennej wiedzy, 

która może znacząco przyczynić się do podejmowanych wysiłków na rzecz zmniejszenia 

liczby wypadków i ich skutków poprzez umożliwienie dokładniejszych prognoz. 
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